604 research outputs found

    A systematic review of the relationship between magnetic resonance imaging based resting-state and structural networks in the rodent brain

    Get PDF
    Recent developments in rodent brain imaging have enabled translational characterization of functional and structural connectivity at the whole brain level in vivo. Nevertheless, fundamental questions about the link between structural and functional networks remain unsolved. In this review, we systematically searched for experimental studies in rodents investigating both structural and functional network measures, including studies correlating functional connectivity using resting-state functional MRI with diffusion tensor imaging or viral tracing data. We aimed to answer whether functional networks reflect the architecture of the structural connectome, how this reciprocal relationship changes throughout a disease, how structural and functional changes relate to each other, and whether changes follow the same timeline. We present the knowledge derived exclusively from studies that included in vivo imaging of functional and structural networks. The limited number of available reports makes it difficult to draw general conclusions besides finding a spatial and temporal decoupling between structural and functional networks during brain disease. Data suggest that when overcoming the currently limited evidence through future studies with combined imaging in various disease models, it will be possible to explore the interaction between both network systems as a disease or recovery biomarker

    Prefrontal involvement in imitation learning of hand actions : effects of practice and expertise.

    Get PDF
    In this event-related fMRI study, we demonstrate the effects of a single session of practising configural hand actions (guitar chords) on cortical activations during observation, motor preparation, and imitative execution. During the observation of non-practised actions, the mirror neuron system (MNS), consisting of inferior parietal and ventral premotor areas, was more strongly activated than for the practised actions. This finding indicates a strong role of the MNS in the early stages of imitation learning. In addition, the dorsolateral prefrontal cortex (DLPFC) was selectively involved during observation and motor preparation of the non-practised chords. This finding confirms Buccino et al.’s (2004a) model of imitation learning: for actions that are not yet part of the observer’s motor repertoire, DLPFC engages in operations of selection and combination of existing, elementary representations in the MNS. The pattern of prefrontal activations further supports Shallice’s (2004) proposal of a dominant role of the left DLPFC in modulating lower-level systems, and of a dominant role of the right DLPFC in monitoring operations

    Effects of a Cognitive Training With and Without Additional Physical Activity in Healthy Older Adults: A Follow-Up 1 Year After a Randomized Controlled Trial

    Get PDF
    Background: Combining cognitive training (CT) with physical activity (CPT) has been suggested to be most effective in maintaining cognition in healthy older adults, but data are scarce and inconsistent regarding long-term effects (follow-up; FU) and predictors of success.Objective: To investigate the 1-year FU effects of CPT versus CT and CPT plus counseling (CPT+C), and to identify predictors for CPT success at FU.Setting and Participants: We included 55 healthy older participants in the data analyses; 18 participants (CPT group) were used for the predictor analysis.Interventions: In a randomized controlled trial, participants conducted a CT, CPT, or CPT+C for 7 weeks.Outcome Measures: Overall cognition, verbal, figural, and working memory, verbal fluency, attention, planning, and visuo-construction.Results: While within-group comparisons showed cognitive improvements for all types of training, only one significant interaction Group × Time favoring CPT in comparison to CPT+C was found for overall cognition and verbal long-term memory. The most consistent predictor for CPT success (in verbal short-term memory, verbal fluency, attention) was an initial low baseline performance. Lower education predicted working memory gains. Higher levels of insulin-like growth factor 1 (IGF-1) and lower levels of brain-derived neurotrophic factor at baseline (BDNF) predicted alternating letter verbal fluency gains.Discussion: Within-group comparisons indicate that all used training types are helpful to maintain cognition. The fact that cognitive and sociodemographic data as well as nerve growth factors predict long-term benefits of CPT contributes to the understanding of the mechanisms underlying training success and may ultimately help to adapt training to individual profiles.Clinical Trial Registration: WHO ICTRP (http://apps.who.int/trialsearch/), identifier DRKS00005194

    Dynamics of neuroinflammation in the macrosphere model of arterio-arterial embolic focal ischemia: an approximation to human stroke patterns

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroinflammation evolves as a multi-facetted response to focal cerebral ischemia. It involves activation of resident glia cell populations, recruitment of blood-derived leucocytes as well as humoral responses. Among these processes, phagocyte accumulation has been suggested to be a surrogate marker of neuroinflammation. We previously assessed phagocyte accumulation in human stroke by MRI. We hypothesize that phagocyte accumulation in the macrosphere model may resemble the temporal and spatial patterns observed in human stroke.</p> <p>Methods</p> <p>In a rat model of permanent focal ischemia by embolisation of TiO<sub>2</sub>-spheres we assessed key features of post-ischemic neuroinflammation by the means of histology, immunocytochemistry of glial activation and influx of hematogeneous cells, and quantitative PCR of TNF-α, IL-1, IL-18, and iNOS mRNA.</p> <p>Results</p> <p>In the boundary zone of the infarct, a transition of ramified microglia into ameboid phagocytic microglia was accompanied by an up-regulation of MHC class II on the cells after 3 days. By day 7, a hypercellular infiltrate consisting of activated microglia and phagocytic cells formed a thick rim around the ischemic infarct core. Interestingly, in the ischemic core microglia could only be observed at day 7. TNF-α was induced rapidly within hours, IL-1β and iNOS peaked within days, and IL-18 later at around 1 week after ischemia.</p> <p>Conclusions</p> <p>The macrosphere model closely resembles the characteristical dynamics of postischemic inflammation previously observed in human stroke. We therefore suggest that the macrosphere model is highly appropriate for studying the pathophysiology of stroke in a translational approach from rodent to human.</p

    Pallidal Deep Brain Stimulation Reduces Sensorimotor Cortex Activation in Focal/Segmental Dystonia

    Get PDF
    Background Although deep brain stimulation of the globus pallidus internus (GPi-DBS) is an established treatment for many forms of dystonia, including generalized as well as focal forms, its effects on brain (dys-)function remain to be elucidated, particularly for focal and segmental dystonia. Clinical response to GPi-DBS typically comes with some delay and lasts up to several days, sometimes even weeks, once stimulation is discontinued. Objective This study investigated how neural activity during rest and motor activation is affected by GPi-DBS while excluding the potential confound of altered feedback as a result of therapy-induced differences in dystonic muscle contractions. Methods Two groups of patients with focal or segmental dystonia were included in the study: 6 patients with GPi-DBS and 8 without DBS (control group). All 14 patients had cervical dystonia. Using (H2O)-O-15 PET, regional cerebral blood flow was measured at rest and during a motor task performed with a nondystonic hand. Results In patients with GPi-DBS (stimulation ON and OFF), activity at rest was reduced in a prefrontal network, and during the motor task, sensorimotor cortex activity was lower than in patients without DBS. Within-group contrasts (tapping > rest) showed less extensive task-induced motor network activation in GPi-DBS patients than in non-DBS controls. Reduced sensorimotor activation amounted to a significant group-by-task interaction only in the stimulation ON state. Conclusions These findings support previous observations in generalized dystonia that suggested that GPi-DBS normalizes dystonia-associated sensorimotor and prefrontal hyperactivity, indicating similar mechanisms in generalized and focal or segmental dystonia. Evidence is provided that these effects extend into the OFF state, which was not previously demonstrated by neuroimaging. (c) 2020 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.Peer reviewe

    Differential Effect of Retroactive Interference on Object and Spatial Memory in the Course of Healthy Aging and Neurodegeneration

    Get PDF
    Objective: In subjects with mild cognitive impairment (MCI), interference during memory consolidation may further degrade subsequent recall of newly learned information. We investigated whether spatial and object memory are differentially susceptible to interference.Method: Thirty-nine healthy young subjects, 39 healthy older subjects, and 12 subjects suffering from MCI encoded objects and their spatial position on a 4-by-5 grid. Encoding was followed by either: (i) a pause; (ii) an interference task immediately following encoding; or (iii) an interference task following encoding after a 6-min delay. Type of interference (no, early, delayed) was applied in different sessions and order was counterbalanced. Twelve minutes after encoding, subjects saw objects previously presented or new ones. Subjects indicated whether they recognized the object, and if so, the objects’ position during encoding.Results: Interference during consolidation provoked a negative effect on spatial memory in young more than older controls. In MCI, object but not spatial memory was affected by interference. Furthermore, a shift from fine- to coarse-grained spatial representation was observed in MCI. No differential effect of early vs. late interference (EI vs. LI) in either of the groups was detected.Conclusions: Data show that consolidation in healthy aging and MCI differs from consolidation in young controls. Data suggest differential processes underlying object and spatial memory and that these are differentially affected by aging and MCI

    Neural Network Connectivity During Post-encoding Rest: Linking Episodic Memory Encoding and Retrieval

    Get PDF
    Commonly, a switch between networks mediating memory encoding and those mediating retrieval is observed. This may not only be due to differential involvement of neural resources due to distinct cognitive processes but could also reflect the formation of new memory traces and their dynamic change during consolidation. We used resting state fMRI to measure functional connectivity (FC) changes during post-encoding rest, hypothesizing that during this phase, new functional connections between encoding- and retrieval-related regions are created. Interfering and reminding tasks served as experimental modulators to corroborate that the observed FC differences indeed reflect changes specific to post-encoding rest. The right inferior occipital and fusiform gyri (active during encoding) showed increased FC with the left inferior frontal gyrus and the left middle temporal gyrus (MTG) during post-encoding rest. Importantly, the left MTG subsequently also mediated successful retrieval. This finding might reflect the formation of functional connections between encoding- and retrieval-related regions during undisturbed post-encoding rest. These connections were vulnerable to experimental modulation: Cognitive interference disrupted FC changes during post-encoding rest resulting in poorer memory performance. The presentation of reminders also inhibited FC increases but without affecting memory performance. Our results contribute to a better understanding of the mechanisms by which post-encoding rest bridges the gap between encoding- and retrieval-related networks

    Successful Treatment of Myasthenia Gravis Following PD-1/CTLA-4 Combination Checkpoint Blockade in a Patient With Metastatic Melanoma

    Get PDF
    Currently, the blockade of certain immune checkpoints such as the cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death-1 (PD-1) using checkpoint inhibitors is standard of care in patients with metastatic melanoma, especially with BRAF wild-type. However, several checkpoint inhibitor-related complications have been reported, including severe adverse events in the central and peripheral nervous system. In particular, in the recent past, the occurrence of myasthenia gravis following checkpoint inhibitor monotherapy, particularly nivolumab or ipilimumab, has been reported. In contrast, reports on PD-1/CTLA-4 combination blockade—usually with fatal clinical outcome—are scarce. We here report a case with combination immune checkpoint blockade-related myasthenia gravis with favorable clinical outcome
    corecore