30 research outputs found

    Effects of dietary lipid level and environmental temperature on lipid metabolism in the intestine and liver, and choline requirement in Atlantic salmon (Salmo salar L) parr

    Get PDF
    Choline was recently established as an essential nutrient for Atlantic salmon at all life stages. Choline deficiency is manifested as an excessive accumulation of dietary fat within the intestinal enterocytes, a condition known as steatosis. Most of today's plant-based salmon feeds will be choline-deficient unless choline is supplemented. Choline's role in lipid transport suggests that choline requirement may depend on factors such as dietary lipid level and environmental temperature. The present study was therefore conducted to investigate whether lipid level and water temperature can affect steatosis symptoms, and thereby choline requirement in Atlantic salmon. Four choline-deficient plant-based diets were formulated differing in lipid level of 16, 20, 25 and 28 % and fed to salmon of 25 g initial weight in duplicate tanks per diet at two different environmental temperatures: 8 and 15 °C. After 8 weeks of feeding, samples of blood, tissue and gut content from six fish per tank were collected, for analyses of histomorphological, biochemical and molecular biomarkers of steatosis and choline requirement. Increasing lipid level did not affect growth rate but increased relative weight and lipid content of the pyloric caeca and histological symptoms of intestinal steatosis and decreased fish yield. Elevation of the water temperature from 8 to 15 °C, increased growth rate, relative weight of the pyloric caeca, and the histological symptoms of steatosis seemed to become more severe. We conclude that dietary lipid level, as well as environmental temperature, affect choline requirement to a magnitude of importance for fish biology and health, and for fish yield

    Technical feed quality influences health, digestion patterns, body mineralization and bone development in farming of the stomachless cleaner fish ballan wrasse (Labrus bergylta)

    Get PDF
    Farmed ballan wrasse (Labrus bergylta) is an efficient cleaner fish used for non-medicinal delicing of Atlantic salmon in sea cages replacing to an increasing degree wild wrasse due to considerations for biodiversity and risk of overfishing local wrasse populations. Farming of ballan wrasse has been hampered by low growth rates, high prevalence of skeletal deformities and other welfare related pathologies. In this study we investigated how diets identical in composition but differing in their technical characteristics, by being prepared using different feed production technologies, affect fish performance, mineralization, bone development and gut health of the ballan wrasse larvae and juveniles. The different production technologies include the commonly used ‘high temperature’ extrusion, cold extrusion, and agglomeration, resulting in feed pellets with distinctive physicochemical properties. The results revealed that prolonged feeding periods with extruded pellets during ballan wrasse larvae weaning result in low body mineralization and the development of severe skeletal deformities. In juvenile ballan wrasse, the extruded pellet treatment resulted in higher mortality rates, fish with larger livers, indication for increased serum TAG and cholesterol in a similar manner, and increased activity of the digestive enzymes LAP and maltase, most probably as a compensatory mechanism to the assumed reduced availability of protein and carbohydrates of extruded pellets for this fish species. Smaller dietary effects were identified in terms of intestinal morphology and gene transcription rates.publishedVersio

    Effects of dietary lipid level on growth, digestive physiology and disease resistance in lumpfish (Cyclopterus lumpus)

    Get PDF
    Lumpfish (Cyclopterus lumpus) aquaculture has expanded greatly in recent years due to demands for sea lice cleanerfish from the salmon industry. There are knowledge gaps in lumpfish digestive physiology, nutrient requirement and implications of nutrition for health and disease susceptibility. The present study, conducted to follow up our recent screening trials for estimation of optimal balance of protein, lipid and carbohydrate in diets for lumpfish, involved challenging the fish with Aeromonas salmonicida after a feeding period with diets varying in lipid composition. Three experimental diets were formulated to have similar content of digestible protein and carbohydrate but varying in content of lipid from 6.7 to 18%. Lumpfish with average body weight at start of 1.7 ± 0.03 g were fed the experimental diets in triplicate tanks each (110 fish per tank, in total 990 fish in 9 tanks) for a period of 90 days. After termination of the feeding trial and subsequent collection of biological samples, remaining fish were challenged with atypical A. salmonicida. No significant effects of diet were observed for growth performance. Carcass composition showed increasing content of lipid, protein, and energy with increasing dietary lipid level. Increasing dietary lipid also increased hepatic dry matter, lipid and energy levels, while crude protein decreased. Blood plasma nutrient levels and biomarkers of liver function showed few significant effects of diet, but dietary lipid level increased plasma cholesterol. Intestinal trypsin activity increased with increasing dietary lipid, whereas activity of other digestive enzymes and digesta bile salt levels were unaffected by diet. Increasing lipid level also increased lipid accumulation in the proximal and mid intestine. Expression profiling of genes related to digestive and immune function showed few effects of diet, but the nutrient transporters fabp2 and slc15a1, as well as the immune genes MHCII, igm, and nfkb showed increases with dietary lipid levels, whereas the cholesterol transporter npc1l1 was suppressed. Diet composition did not affect the lumpfish’ resistance against A. salmonicida. To conclude, the variation in macronutrient composition induced modulations in metabolic, digestive and some immune functions. Modulations seemed however to be within normal ranges and did not produce clear compromises in immune responses to bacterial infection.Effects of dietary lipid level on growth, digestive physiology and disease resistance in lumpfish (Cyclopterus lumpus)publishedVersio

    Choline and phosphatidylcholine, but not methionine, cysteine, taurine and taurocholate, eliminate excessive gut mucosal lipid accumulation in Atlantic salmon (Salmo salar L)

    No full text
    Excessive enterocyte lipid accumulation, with the suggested term lipid malabsorption syndrome (LMS), is frequently observed in Atlantic salmon (Salmo salar L), in small fish in fresh water as well as in large fish in seawater. The symptoms indicate insufficient supply of components involved in lipid assimilation. The questions addressed in the present work were whether dietary supply of components involved in phospholipid and sterol metabolism might prevent LMS. Atlantic salmon (35 fish, 330 g per 600 L tank) were fed a low fish meal diet (LF) as such or supplemented with taurocholate at two levels (3.5 and 6.9 g/kg), cholesterol (2.0 g/kg), taurine (0.8 g/kg), phosphatidylcholine (15.1 g/kg), choline (3.7 g/kg), cysteine (0.8 g/kg) or methionine (1.0 g/kg). A high fish meal diet (HF) was also included. The overall growth rate of the fish was high (TGC>4.2) with no significant effects of diet. Fish fed the LF diet showed increased relative weight of the pyloric and mid intestine and excessive lipid accumulation in the enterocytes, characteristics which were nearly absent in fish fed the HF diet and the LF diet supplemented with choline and phosphatidylcholine. The phosphatidylcholine supplemented diet showed significantly higher lipid digestibility than the LF diet. None of the other supplements eliminated the signs of excessive enterocyte lipid accumulation. Phosphatidylcholine down-regulated pcyt1a, involved in the phosphatidylcholine synthesis, and both choline and phosphatidylcholine induced apoaIV, important in lipoprotein assembly, and markedly suppressed the lipid droplet marker plin2. Methionine supplementation did not stimulate endogenous synthesis of choline. Cholesterol supplementation suppressed sterol uptake and de novo cholesterol synthesis, and induced sterol efflux from the intestinal mucosa. Taurocholate and taurine induced their respective metabolic pathways. All feed supplements, in particular cholesterol and cysteine, down-regulated genes related to antiviral, chemokine, antigen presentation, immunoglobulinfunctions, as well as of extracellular proteases. The results of this study confirm the results from our previous study showing that choline or phosphatidylcholine is a necessary ingredient in low fish meal diets

    Dietary Fish Meal Level and a Package of Choline, β-Glucan, and Nucleotides Modulate Gut Function, Microbiota, and Health in Atlantic Salmon (Salmo salar, L.)

    Get PDF
    Steatosis and inflammation have been common gut symptoms in Atlantic salmon fed plant rich diets. Choline has recently been identified as essential for salmon in seawater, and β-glucan and nucleotides are frequently used to prevent inflammation. The study is aimed at documenting whether increased fishmeal (FM) levels (8 levels from 0 to 40%) and supplementation (Suppl) with a mixture of choline (3.0 g/kg), β-glucan (0.5 g/kg), and nucleotides (0.5 g/kg) might reduce the symptoms. Salmon (186 g) were fed for 62 days in 16 saltwater tanks before samples were taken from 12 fish per tank for observation of biochemical, molecular, metabolome, and microbiome indicators of function and health. Steatosis but no inflammation was observed. Lipid digestibility increased and steatosis decreased with increasing FM levels and supplementation, seemingly related to choline level. Blood metabolites confirmed this picture. Genes in intestinal tissue affected by FM levels are mainly involved in metabolic and structural functions. Only a few are immune genes. The supplement reduced these FM effects. In gut digesta, increasing FM levels increased microbial richness and diversity, and changed the composition, but only for unsupplemented diets. An average choline requirement of 3.5 g/kg was indicated for Atlantic salmon at the present life stage and under the present condition

    A Screening Study on Effects Varying Dietary Macronutrient Composition on Gut Functions in Lumpfish (Cyclopterus lumpus)

    No full text
    Cultivation of lumpfish (Cyclopterus lumpus) as lice cleaner fish for salmon is now expanding. For successful cultivation of a new species, understanding the basic biology of digestive functions is vital to facilitate and optimize diet formulation. This paper presents results from two experiments conducted to deepen our knowledge on lumpfish intestine physiology. Experiment 1 was a 42-day feeding trial in which lumpfish were fed twelve different diets in the following ranges of macronutrients: Protein 43-68%, lipid 4-17%, and carbohydrate 6-17%. Intestinal tissue, gut content and liver were sampled from 6 fish per tank. The results showed that with increasing lipid level and corresponding decrease in protein level, there was a linear decrease in several of the observed biomarkers, including activity of brush border membrane digestive enzymes, expression of genes related to nutrient digestion and transport, ion exchange, immune regulation, and cell remodeling. Increased intracellular accumulation of lipid (steatosis) was observed in gut and liver with increasing dietary lipid level. Fewer effects were observed for increased dietary carbohydrate and corresponding decreased protein level. Experiment 2 was a two-week feeding trial for estimation of macronutrient digestibility in which lumpfish were fed three diets, all containing 55% crude protein, with lipid to carbohydrate ratio of the low lipid diet of 7.5%/18.3%, the medium lipid diet of 13.8%/14.6%, and high lipid diet of 18.1%/9.5%. Fecal samples were collected as pooled samples per tank. These results showed that fatty acid digestibility’s increased as dietary lipid level increased. Of note, starch digestibility decreased greatly as starch level increased, whereas protein digestibility did not change as lipid or starch level varied. Taken together, the present studies indicated that increasing lipid level in the diet with corresponding decrease in protein level affects digestion, absorption, and immune responses in the lumpfish intestine. Variation in dietary carbohydrate to protein level showed less effects, possibly due to low starch digestibility which makes the variation in available carbohydrates much less than the variation in the analysed level of dietary carbohydrates
    corecore