13,348 research outputs found

    Survey of inorganic polymers

    Get PDF
    A literature search was carried out in order to identify inorganic, metallo-organic, and hybrid inorganic-organic polymers that could serve as potential matrix resins for advanced composites. The five most promising candidates were critically reviewed and recommendations were made for the achievement of their potential in terms of performance and cost. These generic polymer classes comprise: (1) Poly(arylsil sesquioxanes); (2) Poly(silyl arylene siloxanes); (3) Poly(silarylenes); (4) Poly(silicon-linked ferrocenes); and (5) Poly(organo phosphazenes). No single candidate currently possesses the necessary combination of physicomechanical properties, thermal stability, processability, and favorable economics. The first three classes exhibit the best thermal performance. On the other hand, poly (organo phosphazenes), the most extensively studied polymer class, exhibit the best combination of structure-property control, processability, and favorable economics

    The microstructure of plasmodesmata in internodal stem tissue of the Saccharum hybrid var. NCo376 : evidence for an apoplasmic loading pathway

    Get PDF
    The distribution, structure and functional state of plasmodesmata were investigated to gain a clearer understanding of the sucrose transport pathway to the storage parenchyma cells in stem tissue in Saccharum officinarum var. NCo376. Evidence from structural studies on sugarcane stems by electron microscopy indicated that there are numerous plasmodesmata from the vascular bundles through to the storage parenchyma cells in mature stem tissue. Our studies, supported by fluorescence microscopy and iontophoresis, indicate that there are functional plasmodesmata in the phloemunloading pathway from transport phloem tissue to the bundle sheath in Saccharum, which could support symplasmic transport; plasmodesmata outside of the sheath cells in the storage parenchyma appear to be constricted by sphincter-like structures within their neck regions. Staining with Aniline Blue revealed evidence of large callose deposits, which co-localized with plasmodesmatal aggregates in the walls of the storage parenchyma cells. This suggests that the sucrose transport into, and accumulation by, storage parenchyma of mature stem tissue is under apoplasmic control

    The exploration of eastern Mediterranean deep hypersaline anoxic basins with MODUS: a significant example of technology spin-off from the Geostar Program

    Get PDF
    A significant example of technological spin-off from the GEOSTAR project is represented by the special-purpose instrumented module, based on the deep-sea ROV MODUS, which was developed in the framework of the EU-sponsored project BIODEEP. The goal to be achieved has been defined as the exploration, through real-time video images, measurements and accurate video-guided sampling, of the deep hypersaline anoxic basins of the eastern Mediterranean Sea at water depths well exceeding 3000 meters. Due to their peculiar characteristics, these basins are one of the most extreme environments on Earth and represent a site of utmost interest for their geochemical and microbial resources. The paper presents the strategies and the main results achieved during the two cruises carried out within the BIODEEP project

    Algal food and fuel coproduction can mitigate greenhouse gas emissions while improving land and water-use efficiency

    Get PDF
    The goals of ensuring energy, water, food, and climate security can often conflict.Microalgae (algae) are being pursued as a feedstockfor both food and fuels—primarily due to algae’s high areal yield and ability to grow on non-arable land, thus avoiding common bioenergy-food tradeoffs. However, algal cultivation requires significant energy inputs that may limit potential emission reductions.We examine the tradeoffs associated with producing fuel andfood from algae at the energy–food–water–climate nexus.We use the GCAM integrated assessment model to demonstrate that algalfood production can promote reductions in land-use change emissions through the offset of conventional agriculture. However,fuel production, either via co-production of algal food and fuel or complete biomass conversion to fuel, is necessary to ensure long-term emission reductions, due to the high energy costs of cultivation. Cultivation of salt– water algae for food products may lead to substantial freshwater savings; but, nutrients for algae cultivation will need to be sourced from waste streams to ensure sustainability. By reducing the land demand of food production, while simultaneously enhancingfood and energy security, algae can further enable the development of terrestrial bioenergy technologies including those utilizing carbon capture and storage. Our results demonstrate that large-scale algae research and commercialization efforts should focus on developing both food and energy products to achieve environmental goals.https://iopscience.iop.org/article/10.1088/1748-9326/11/11/114006/metaPublished versio

    COMPARISON OF ANGLES AND THE CORRESPONDING MOMENTS IN KNEE AND HIP DURING RESTRICTED AND UNRESTRICTED SQUATS

    Get PDF
    The aim of this study is the comparison of angles and the corresponding moments in knee and hip during squatting. The five subjects performed restricted and unrestricted squats. The experimental set-up consisted of a motion capture system and two force plates. The loading conditions were 0, ¼ and ½ BW. The moments and the force were calculated using inverse dynamics. Overall, the maximal moments were observed in the knee during unrestricted squats and in the hip during restricted squats. Comparing the moments at a knee angle of 60º, the loading conditions have a larger influence than the type of execution. The moment in the knee is 10.4%, respectively 11.2% lower with ¼ and ½ body weight during restricted squats. In the hip, the moment is 15.5 %, respectively 14 % higher for the same conditions. The angle of the hip remains rather constant. This most likely implies a higher load to the lower back. Hence, the exercise instruction should be adapted to the aims and the training condition of the athlete

    Morphological Abnormalities in Vitamin B6 Deficient Tarsometatarsal Chick Cartilage

    Get PDF
    The aim of this study was to test the hypothesis that deficiency of vitamin B6 would produce morphological characteristics of osteochondral lathyrism. To accomplish this goal, morphological characteristics of chick cartilage in which lathyrism was produced by two separate dietary regimens was compared to morphological changes encountered in vitamin B6 deficiency. Vitamin B6 deficiency should reduce activity of lysyloxidase needed for producing intermolecular cross-links. The question to be addressed was: would this latter deficiency impair collagen morphological features and secondarily other structures indirectly by reducing collagen molecular assembly? Failure of cross-linking of collagen in the positive controls was related to a lack of functional aldehyde cross-link intermediates which are blocked by homocysteine and aminoacetonitrile. Day-old-male Lohmann chicks were fed adequate (6 mg/kg) or vitamin B6-deficient diets. Cross-link defects were induced by homocysteine-rich diets (0.6% w/w) or a diet containing aminoacetonitrile (0.1% w/w). Animals were sacrificed at 6 weeks of age and Ossa tarsalia articular cartilage specimens, as well as the proximal end of tarsometatarsus were dissected from the tibial metatarsal joint, a major weight-bearing site. Light microscopic observations revealed reduction of subarticular trabecular bone formation, concurrent with overexpansion of the hypertrophic cell zone. Ultrastructural electron microscopy observations of articular fibro-cartilage indicated significant thickening of collagen fibers in vitamin B6 deficient birds, as well as the positive controls in comparison to that of cage-matched control birds. It was concluded that vitamin B6 deficient cross-linking may be responsible for the observed delay in bone development and aforementioned cartilage histological alterations

    Chandra Observations of the Interacting NGC 4410 Galaxy Group

    Full text link
    We present high resolution X-ray imaging data from the ACIS-S instrument on the Chandra telescope of the nearby interacting galaxy group NGC 4410. Four galaxies in the inner portion of this group are clearly detected by Chandra, including the peculiar low luminosity radio galaxy NGC 4410A. In addition to a nuclear point source, NGC 4410A contains diffuse X-ray emission, including an X-ray ridge extending out to about 12" (6 kpc) to the northwest of the nucleus. This ridge is coincident with an arc of optical emission-line gas, which has previously been shown to have optical line ratios consistent with shock ionization. This structure may be due to an expanding superbubble of hot gas caused by supernovae and stellar winds or by the active nucleus. The Chandra observations also show four or five possible compact ultra-luminous X-ray (ULX) sources (L(x) >= 10^39 erg/s) associated with NGC 4410A. At least one of these candidate ULXs appears to have a radio counterpart, suggesting that it may be due to an X-ray binary with a stellar-mass black hole, rather than an intermediate mass black hole. In addition, a faint diffuse intragroup X-ray component has been detected between the galaxies (L(x) ~ 10^41 erg/s). This supports the hypothesis that the NGC 4410 group is in the process of evolving via mergers from a spiral-dominated group (which typically have no X-ray-emitting intragroup gas) to an elliptical-dominated group (which often have a substantial intragroup medium).Comment: 27 pages, 14 figures; Accepted by Astronomical Journal; color images at http://www.etsu.edu/physics/bsmith/research/n4410.htm

    Correlation between the Extraordinary Hall Effect and Resistivity

    Full text link
    We study the contribution of different types of scattering sources to the extraordinary Hall effect. Scattering by magnetic nano-particles embedded in normal-metal matrix, insulating impurities in magnetic matrix, surface scattering and temperature dependent scattering are experimentally tested. Our new data, as well as previously published results on a variety of materials, are fairly interpreted by a simple modification of the skew scattering model

    Hot Nucleons in Chiral Soliton Models

    Full text link
    Chiral lagrangians as effective field theories of QCD are most suitable for the study of nucleons in a hot pion gas because they contain pions and also baryons as solitons of the same action. The semiclassical treatment of the soliton solutions must be augmented by pionic fluctuations which requires renormalisation to 1-loop, and finite temperatures do not introduce new ultraviolet divergencies and may easily be considered. Alternatively, a renormalisation scheme based on the renormalisation group equation at finite temperature comprises and extends the rigorous results of chiral perturbation theory and renders the low energy constants temperature-dependent which allows the construction of temperature-dependent solitons below the critical temperature. The temperature-dependence of the baryon energy and the pion-nucleon coupling is studied. There is no simple scaling law for the temperature-dependence of these quantities.Comment: 17 pages (RevTeX), 5 figure
    • …
    corecore