25 research outputs found

    Sensorless Control of Electric Motors with Kalman Filters: Applications to Robotic and Industrial Systems

    Get PDF
    The paper studies sensorless control for DC and induction motors, using Kalman Filtering techniques. First the case of a DC motor is considered and Kalman Filter-based control is implemented. Next the nonlinear model of a field-oriented induction motor is examined and the motor's angular velocity is estimated by an Extended Kalman Filter which processes measurements of the rotor's angle. Sensorless control of the induction motor is again implemented through feedback of the estimated state vector. Additionally, a state estimation-based control loop is implemented using the Unscented Kalman Filter. Moreover, state estimation-based control is developed for the induction motor model using a nonlinear flatness-based controller and the state estimation that is provided by the Extended Kalman Filter. Unlike field oriented control, in the latter approach there is no assumption about decoupling between the rotor speed dynamics and the magnetic flux dynamics. The efficiency of the Kalman Filter-based control schemes, for both the DC and induction motor models, is evaluated through simulation experiments

    flatness based adaptive fuzzy control of spark ignited engines

    Get PDF
    Abstract An adaptive fuzzy controller is designed for spark-ignited (SI) engines, under the constraint that the system's model is unknown. The control algorithm aims at satisfying the H∞ tracking performance criterion, which means that the influence of the modeling errors and the external disturbances on the tracking error is attenuated to an arbitrary desirable level. After transforming the SI-engine model into the canonical form, the resulting control inputs are shown to contain nonlinear elements which depend on the system's parameters. The nonlinear terms which appear in the control inputs are approximated with the use of neuro-fuzzy networks. It is shown that a suitable learning law can be defined for the aforementioned neuro-fuzzy approximators so as to preserve the closed-loop system stability. With the use of Lyapunov stability analysis it is proven that the proposed adaptive fuzzy control scheme results in H∞ tracking performance. The efficiency of the proposed adaptive fuzzy control scheme is checked through simulation experiments

    State-space approaches for modelling and control in financial engineering: systems theory and machine learning methods

    No full text
    The book conclusively solves problems associated with the control and estimation of nonlinear and chaotic dynamics in financial systems when these are described in the form of nonlinear ordinary differential equations. It then addresses problems associated with the control and estimation of financial systems governed by partial differential equations (e.g. the Black–Scholes partial differential equation (PDE) and its variants). Lastly it an offers optimal solution to the problem of statistical validation of computational models and tools used to support financial engineers in decision making. The application of state-space models in financial engineering means that the heuristics and empirical methods currently in use in decision-making procedures for finance can be eliminated. It also allows methods of fault-free performance and optimality in the management of assets and capitals and methods assuring stability in the functioning of financial systems to be established. Covering the following key areas of financial engineering: (i) control and stabilization of financial systems dynamics, (ii) state estimation and forecasting, and (iii) statistical validation of decision-making tools, the book can be used for teaching undergraduate or postgraduate courses in financial engineering. It is also a useful resource for the engineering and computer science community

    Derivative-Free Nonlinear Kalman Filtering for MIMO Dynamical Systems: Application to Multi-DOF Robotic Manipulators

    No full text
    The paper proposes derivative-free nonlinear Kalman Filtering for MIMO nonlinear dynamical systems. The considered nonlinear filtering scheme which is based on differential flatness theory extends the class of systems to which Kalman Filtering can be applied without the need for calculation of Jacobian matrices. To deduce if a dynamical system is differentially flat, the following should be examined: (i) the existence of the flat output, which is a variable that can be written as a function of the system's state variables (ii) the system's state variables and the input can be written as functions of the flat output and its derivatives. Nonlinear systems satisfying the differential flatness property can be written in the Brunovsky form via a transformation of their state variables and control inputs. After transforming the nonlinear system to the canonical form it is straightforward to apply the standard Kalman Filter recursion. The performance of the proposed derivative-free nonlinear filtering scheme is tested through simulation experiments on benchmark nonlinear multi-input multi-output dynamical systems, such as robotic manipulators

    Nonlinear control and filtering using differential flatness approaches: applications to electromechanical systems

    No full text
    This monograph presents recent advances in differential flatness theory and analyzes its use for nonlinear control and estimation. It shows how differential flatness theory can provide solutions to complicated control problems, such as those appearing in highly nonlinear multivariable systems and distributed-parameter systems. Furthermore, it shows that differential flatness theory makes it possible to perform filtering and state estimation for a wide class of nonlinear dynamical systems and provides several descriptive test cases. The book focuses on the design of nonlinear adaptive controllers and nonlinear filters, using exact linearization based on differential flatness theory. The adaptive controllers obtained can be applied to a wide class of nonlinear systems with unknown dynamics, and assure reliable functioning of the control loop under uncertainty and varying operating conditions. The filters obtained outperform other nonlinear filters in terms of accuracy of estimation and computation speed. The book presents a series of application examples to confirm the efficiency of the proposed nonlinear filtering and adaptive control schemes for various electromechanical systems. These include: ·         industrial robots; ·         mobile robots and autonomous vehicles; ·         electric power generation; ·         electric motors and actuators; ·         power electronics; ·         internal combustion engines; ·         distributed-parameter systems; and ·         communication systems. Differential Flatness Approaches to Nonlinear Control and Filtering will be a useful reference for academic researchers studying advanced problems in nonlinear control and nonlinear dynamics, and for engineers working on control applications in electromechanical systems

    Multi-Robot Motion Planning Using Swarm Intelligence

    No full text
    Swarm intelligence theory is proposed for motion planning of multi-robot systems. Multiple particles start from different points in the solutions space and interact to each other while moving towards the goal position. Swarm intelligence theory is a derivative-free approach to the problem of multi-robotcooperation which works by searching iteratively in regions defined by each robot's best previous move and the best previous move of its neighbors. The method's performance is evaluated through simulation tests
    corecore