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1. Introduction      

This research work contains results on flatness-based control and sensor fusion for mobile 
robot systems. Flatness-based control is applicable to differentially flat systems i.e. to systems 
the behavior of which is determined by the trajectory of a finite collection of quantities, 
consisting of the flat output and its derivatives [Mounier, H. & Roudolf, J. (2001)],[Rouchon, 
P. (2005)]. Flatness-based control is equivalent to the feedback linearization method where 
the error dynamics of the closed-loop system can be described by a linear ODE after state 
feedback and subsequently can be stabilized using methods from linear control theory 
[Fliess, M. & Mounier, H. (1999)], [Roudolf, H. (2003)]. An advantage of flatness based 
control is that it simplifies trajectory planning and enables open-loop controller design. For 
linear finite dimensional systems flatness coincides with controllability, while this property 
can be generalized in the case of infinite dimensional systems [Laroche, B.; Martin, P. & 
Petit, N. (2007)], [Martin, P. & Rouchon, P. (1999)], [Meurer, T. & Zeitz, M. (2004) ,[Lévine, J. 
& Nguyen, D.V. (2003)].  
Motion planning and control of autonomous vehicles is an important research topic in 
robotics (results in [Rigatos, G.G. (2003)], [Rigatos, G.G.et al., (2001)], [Rigatos, G.G. (2008)]) 
and flatness based control has been proposed as a suitable methodology for this class of 
problems [Martin, P. & Rouchon, P, (1999)]. Using the concept of flatness-based control, 
motion control algorithms have been developed that permit steering of the robotic vehicle 
along any desirable path in the 2D plane [Oriolo, G.et al., (2002)]. It will be shown that the 
kinematic model of the robotic vehicle is a flat system and thus can be expressed using a flat 
output and its derivatives. Moreover, the case in which the mobile robot's state vector is 
estimated through fusion of measurements from distributed sensors will be examined 
[Caron, F. et al., (2007)], [Jetto, L. et al., (1999)], [Yang, N. et al., (2005)]. To this end, the state 
vector of the robotic vehicle will be reconstructed with the use of Gaussian or non-
parametric state estimators (such as Extended Kalman Filtering or Particle Filtering) 
[Rigatos, G.G. (2007)], [Rigatos, G.G. & Tzafestas, S.G. (2007a)], [Rigatos, G.G. (2007b)].  
Simulation experiments in the case of the completely measurable state vector can show that 
flatness-based control enables the mobile robot to follow any reference path. Additionally, 
simulation experiments can show that using the state vector which is estimated from sensor 

O
p
e
n
 A

c
c
e
s
s
 D

a
ta

b
a
s
e
 w

w
w

.i
-t

e
c
h
o
n
lin

e
.c

o
m

Source: Robotics, Automation and Control, Book edited by: Pavla Pecherková, Miroslav Flídr and Jindřich Duník,  
ISBN 978-953-7619-18-3, pp. 494, October 2008, I-Tech, Vienna, Austria

www.intechopen.com



 Robotics, Automation and Control 

 

396 

fusion, flatness-based control is also efficient in making the mobile robot track any desirable 
trajectory.   
The structure of the paper is as follows: In Section 2 principles of flatness-based control are 
analyzed and examples are given for finite dimensional systems. In Section 3, the 
applicability of flatness-based control to mobile robot systems is examined. In Section 4 the 
problem of sensor fusion for mobile robot navigation is studied. Sensor fusion of 
measurements coming from odometer and sonar sensors is performed for the estimation of 
the mobile robot's state vector. The reconstructed state vector is then used in the flatness-
based control algorithm to make the robotic vehicle track the desirable trajectory. In Section 
5, simulation experiments are carried out. First, it is shown how flatness-based control 
succeeds tracking of the desirable trajectory for the mobile robot when the complete state 
vector is measurable.  Next, flatness-based control generates the control signal using the 
state vector which is reconstructed after the fusion of measurements from distributed 
sensors. Finally, in Section 6, concluding remarks are stated.  

2. Flatness-based control 

2.1 Differential flatness for finite dimensional systems  

A finite dimensional system is considered. This can be written in the general form of an 
ODE, i.e. 

 ( , , ,..., ),   1, 2,...,i

i
S w w w w i q

• ••

=   (1) 

The quantity w  denotes the system variable, while ,   1,...,iw i q= are its derivatives (these 

and can be for instance the elements of the system's state vector). The system of Eq. (1) is 

said to be differentially flat if there exists a collection of m functions 
1

( ,..., )
m

y y y= of the 

system variables ,  1,...,
i
w i s= and of their time-derivatives, i.e. 

 ( , , ,..., ),   1,...,i

i
y w w w w i m

αϕ
• ••

= =   (2) 

such that the following two conditions are satisfied [Roudolf, J. (2003)]: 
1. There does not exist any differential relation of the form 

 
( )( , ,..., ) 0R y y y β

•

=   (3) 

which implies that the derivatives of the flat output are not coupled in the sense of an ODE, 
or equivalently it can be said that the flat output is differentially independent. 
2. All system variables, i.e. the components of w (elements of the system's state vectors) 

can be expressed using only the flat output y  and its time derivatives 

 ( , ,..., ),      ,...,i

i i
w y y y i i s

γψ
•

= =   (4) 

An equivalent definition of differentially flat systems is as follows:  

Definition: The system ( , ),   ,   n mx f x u x R u R
•

= ∈ ∈  is differentially flat if there exist 

relations 
1:   ( )n m r mh R R R+× → , :   ( )m r nR Rϕ →   and 

1:   ( )m r mR Rψ + → , such that 
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( )( , , ,..., )ry h x u u u
•

= , ( 1)( , ,..., )rx y y yϕ
•

−=   and ( 1) ( )( , ,..., , )r ru y y y yψ
•

−= .  This means that 

all system dynamics can be expressed as a function of the flat output and its derivatives, 

therefore the state vector x and the control input u can be written as  

( )( ) ( ( ), ( ),..., ( ))rx t y t y t y tϕ
•

=   and  ( 1)( ) ( ( ), ( ),..., ( ))ru t y t y t y tψ
•

+= .  

It is noted that for linear systems the property of differential flatness is equivalent to that of 

controllability. Next, two examples is given to clarify the design of a differentially flat 

controller for finite dimensional system. 

Example 1: Flatness-based control of a nonlinear system [Laroche, B. et al., (2007)] 

 

1 3 2

2 2

3 2 1 2 2
2 ( )

x x x u

x x u

x x x x u x

•

•

•

= −

= − +

= − + −

 (5) 

 The candidate flat differential output is 
2

2

1 1
2

x
y x= + . Thus one gets: 

 

2

2

1 1

2

12 3 2 2 2 2

13 2 2 1 2 2 2 2 1 2

(3)

3 1 3 2 2 2 3 2

2

( ) ( )

2 ( ) 2 ( )

(1 )

x
y x

y y x x u x u x x

y y y x x x u x x u x x x

y y x x u x u x x u xυ

•

• ••

•

= +

= = − + − −

= = = − + − − − = − +

= = = − + − + = − − + +

 (6) 

 

It can be verified that property (1) holds, i.e. there does not exist any differential relation of 

the form ( )( , ,..., ) 0R y y y β
•

= , and this implies that the derivatives of the flat output are not 

coupled. Moreover, it can be shown that property (2) also holds i.e. the components w of the 

system (elements of the system's state vector and control input) can be expressed using only 

the flat output y and its time derivatives ( , ,..., ),  1,...,i

i i
w y y y i s

γψ
•

= = . For instance to 

calculate 
1
x  with respect to 

1
y , 

1
y
•

, 
1
y
••

 and (3)

1
y the relation of  

1
y
••

 is used, i.e.: 

 
2

2

1 11 1 1
2 (1 ) 2 0x x y y y

•• ••

+ + + − =   (7) 

from which two possible solutions are derived, i.e.: 
1 11 1

((1 ) 1 2( ))x y y y
•• ••

= − + − + + , 

1 11 1
((1 ) 1 2( ))x y y y

•• ••

= − + + + + . Keeping the largest of these two solutions one obtains:  

www.intechopen.com



 Robotics, Automation and Control 

 

398 

 

1 11 1

12 1

2

2

1 1 13 1 1

2

3 2

1 1 11 1 1 11

11

(1 1 2( ))

2

2

1

x y y y

x y x

x y y x y x

y y y y x x y x
u

x y

•• ••

••

• •• ••

•• •• • ••

••

= − + + + +

= +

= + + +

+ + + + + +
=

+ +

  (8) 

Using the flat output and its derivatives, the system of Eq.(5) can be written in Brunovsky 
(canonical) form: 

 υ
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

1

0

0

000

100

010

3

2

1

3

2

1

y

y

y

y

y

y

dt

d
  (9) 

Therefore, a transformation of the system into a linear equivalent is obtained and then it is 
straightforward to design a a controller based on linear control theory. Thus given the 

reference trajectory 
1 2 3

[ ]r r r Tx x x  one can find the transformed reference trajectory 

1 11
[ ]

r r

r Ty y y
• ••

  and select the appropriate control input v that succeeds tracking. Knowing 

υ  the control u  of the initial system can be found.   

Example 2: Flatness based Control of N  linear coupled oscillators [Rouchon, P. (2005)] 

The generalized coordinates iz are considered and n oscillators are taken. The oscillators can 

be coupled through an interaction term 
1 2

( , ,..., ) 0
i N
f z z z = and through the common 

control input u . This means that the general oscillator model can be written as  

 
2

2

1 22
( ) ( , ,..., ) ,   1,...,

i i i i N i

d
z z f z z z bu i N

dt
ω= − + + =   (10)                          

or, for  
1 2

( , ,.., ) 0
i N
f z z z =  one obtains 

 
2

2

2
( ) ,   1,..,

i i i i

d
z z bu i N

dt
ω= − + =   (11) 

The terms 0
i

ω > and 0
i
b ≠  are constant parameters, while 0T > and 0D ≠ are also 

defined. The objective is to find open-loop control [0, ]T with ( )t u t→  steering the system 

from an initial to a final state. In [Rouchon, P. (2005)] it has been shown that such control can 
be obtained explicitly, according to the following procedure: the Laplace transform of Eq. 
(11) gives   

 2 2( ( ) ) ,    1,..,
i i i

s z bu i Nω+ = =   (12) 

Then the system can be written in the form [Lévine, J. & Nguyen, D.V. (2003) ]: 
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1

2 2

2
1 1

( ) ,   ( ) ,    wirh  

1
( ) (1 ( ) )  for  ,   ( ) (1 ( ) ),        

( ) ( )

N

i i k k
k

N N
i

i k
k k

i k k k k

z Q s y u Q s y y c z

b s s
Q s k i Q s c R

Q jω ω ω ω

=

= =

= = =

= + ≠ = + = ∈

∑

∏ ∏
 (13)                         

The real coefficients 
i

k
q and 

k
q are defined as follows [Rouchon, P. (2005)]:   

1
2

0

( )
N

i k

i k
k

Q s q s
−

=

=∑  

and 2

0

( )
N

k

k
k

Q s q s
=

=∑ . This enables to express both the system parameters ( )x t and the 

control input ( )u t  as  functions of the flat output ( )y t , i.e. 

 
1

(2 ) (2 )

0 0

( ) ( ),    ( ) ( )
n n

i k k

i k k
k k

x t q y t t q y tυ
−

= =

= =∑ ∑   (14)                          

which satisfy Eq. (11), with ii xz = and vu = . Moreover it holds that  

 ( ) ( )
k k

k

y t c x t=∑   (15) 

There is a one to one linear correspondence between the trajectories of Eq. (11) and the 

arbitrary smooth time function y . More precisely, any piecewise continuous open-loop 

control ( ),   [0, ]u t t T∈ steering from the steady-state (0) 0
i
z = to the steady-state 

2
( )

( )

i

i

i

b
z T D

ω
=  can be written as 

 (2 )

0

( ) ( )
N

k

k
k

u t q y t
=

=∑   (16) 

for all functions ( )y t  such that (0) 0y = , ( )        {1,2,.., 2 1}y T D i n= ∀ − ,  

( ) ( )(0) ( ) 0i iy y T= = . 

The results can be extended to the case of a harmonic oscillator with damping. In that case 

Eq. (11) is replaced by [Rouchon, P. (2005)] 

 
2

2

2
2 ,   1,...,i

i
i i i i i

d z
z z bu i n

dt
ω ξ ω

•

= − − + =   (17) 

where the damping coefficient is 0
i
ξ ≥ . In that case one obtains 

 ( ) ,   ( )
i i
z Q s y u Q s y= =  (18) 

with 

 2 2

2
1 1

( ) (1 2 ( ) ( ) )  ,    ( ) (1 2 ( ) ( ) )
( )

n n
i

i k k
k k

i k k k k

b s s s s
Q s k i Q sξ ξ

ω ω ω ω ω= =

= + + ≠ = + +∏ ∏   (19) 

www.intechopen.com



 Robotics, Automation and Control 

 

400 

which proves again that the system's parameters (state variables) and the control input can 
be written as functions of the flat output y and its derivatives. In that case the flat output is 
of the form: 

 
1

n

k k k k
k

y c z d sz
=

= +∑   (20) 

where /s d dt= and the coefficients 
k
c  and 

k
d can be computed explicitly. According to 

[Lévine, J. & Nguyen, D.V.  (2003)] explicit descriptions of the system parameters via an 
arbitrary function y  (flat output) and its derivatives are possible for any controllable linear 

system of finite dimension (controllability is equivalent to flatness). 

2.2 Flatness-based control for the unicycle robot  
Several mobile robots with non-holonomic motion constraints, are differentially flat 
systems. The conditions for motion without sliding are given in the sequel: 

 

cos

sin

tan

x v

y v

v

l

θ

θ

θ ϕ

•

•

•

=

=

=

  (21) 

where v  is the velocity of the vehicle, l  is the vehicle's length, θ  is the angle between the 

transversal axis of the vehicle and axis OX , and φ  is the angle of the steering wheels with 

respect to the transversal axis of the vehicle. The flat output is the cartesian position of the 

vehicle's center of gravity, denoted as ( , )x yη = , while the other model parameters can be 

written as:  

 || ||v η
•

= ± ,  
cos( )

sin( ) v

θ η
θ

•

⎡ ⎤
=⎢ ⎥

⎣ ⎦
,   3tan( ) det( ) /l vϕ ηη

• ••

=   (22)                          

These formulas show simply that is the tangent angle of the curve traced by P and )tan(φ is 

the associated curvature.  
With reference to a generic driftless nonlinear system 

 ( ) ,   ,   n mq G q w q R w R
•

= ∈ ∈   (23)                          

 the dynamic feedback linearization consists in finding a feedback compensator of the form 

 
( , ) ( , )

( , ) ( , )

q b q u

w c q d q u

ξ α ξ ξ
ξ ξ

•

= +
= +

 (24)                          

with state Rνξ ∈ and input mu R∈ , such that the closed-loop system of Eq. (23) and Eq. (24) 

is equivalent under a state transformation ( , )z T q ξ= to a linear system. The starting point 
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is the definition of an m -dimensional output ( )h qη =  to which a desired behavior can be 

assigned. One then proceeds by successively differentiating the output until the input 

appears in a non-singular way. If the sum of the output differentiation orders equals the 

dimension ν+n  of the extended state space, full input-state-output linearization is obtained 

(In this case η  is also called a flat output). The closed-loop system is then equivalent to a set 

of decoupled input-output chains of integrators from iu to ( 1, 2,.., )
i
i mη = . The exact 

linearization procedure is illustrated for the unicycle model of Eq. (21). As flat output the 

coordinates of the center of gravity of the vehicle is considered ),( yx=η . Differentiation 

with respect to time then yields  [Oriolo, G. et al.,(2002)] 

 
cos( ) 0

sin( ) 0

x v

y

θ
η

θ ω

•
•

•

⎡ ⎤ ⎛ ⎞ ⎡ ⎤⎢ ⎥= = ⋅⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎝ ⎠ ⎣ ⎦⎣ ⎦
  (25) 

showing that only v affects η
•

, while the angular velocity ω cannot be recovered from this 

first-order differential information. To proceed, one needs to add an integrator (whose state 

is denoted by ξ ) on the linear velocity input 

 
cos( )

,   
sin( )

v
θ

ξ ξ α η ξ
θ

• • ⎛ ⎞
= = ⇒ = ⎜ ⎟

⎝ ⎠
  (26) 

where α denotes the linear acceleration of the robotic vehicle. Differentiating further one 

obtains  

 
cos( ) sin( ) cos( ) sin( )

sin( ) cos( ) sin( ) cos( )

θ θ θ ξ θ α
η ξ ξ θ

θ θ θ ξ θ ω

•• • • −⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
= + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
  (27)                          

and the matrix multiplying the modified input ),( ωa is nonsingular if 0≠ξ . Under this 

assumption one defines 

 

1

1

2

cos( ) sin( )

sin( ) cos( )

u

u

α θ ξ θ
ω θ ξ θ

−
− ⎛ ⎞⎛ ⎞ ⎛ ⎞

= ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

  (28)                          

η
••

 is denoted as 

 
1 1

2
2

u
u

u

η
η

η

••
••

••

⎛ ⎞ ⎛ ⎞⎜ ⎟= = =⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
  (29) 

which means that the desirable linear acceleration and the desirable angular velocity can be 

expressed using the transformed control inputs 1u  and 2u . Then, the resulting dynamic 

compensator is (return to the initial control inputs v  and ω ) 
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1 2

2 1

cos( ) sin( )

cos( ) sin( )

u u

v

u u

ξ θ θ
ξ

θ θ
ω

ξ

•

= +
=
−

=

  (30)                          

Being Rξ ∈ , it is 3 1 4n v+ = + = , equal to the output differentiation order in Eq. (29). In 

the new coordinates 

 

1

2

3

4

cos( )

sin( )

z x

z y

z x

z y

ξ θ

ξ θ

•

•

=
=

= =

= =

  (31) 

The extended system is thus fully linearized and described by the chains of integrators, in 
Eq. (29), and can be rewritten as 

 
1

1

2
2

z u

z u

••

••

=

=
  (32) 

The dynamic compensator of Eq. (30) has a potential singularity at 0== vξ , i.e. when the 

unicycle is not rolling. The occurrence of such singularity is structural for non-holonomic 
systems. This difficulty must be obviously taken into account when designing control laws 
on the equivalent linear model.  
A nonlinear controller for output trajectory tracking, based on dynamic feedback 
linearization, is easily derived. Assume that the robot must follow a smooth trajectory 

( ( ), ( ))
d d
x t y t  which is persistent, i.e. for which the nominal velocity  

2 2

1/2( )d dd
v x y

• •

= +  along 

the trajectory never goes to zeros (and thus singularities are avoided). On the equivalent and 
decoupled system of Eq. (32), one can easily design an exponentially stabilizing feedback for 
the desired trajectory, which has the form     

 1 1

1 1

1

2

( ) ( )

( ) ( )

d dp d d

d dp d d

u x k x x k x x

u y k y y k y y

•• • •

•• • •

= + − + −

= + − + −
  (33) 

which results in the following error dynamics for the closed-loop system 

 1 1

2 2

0

0

x xd p x

y yd p y

e k e k e

e k e k e

•• •

•• •

+ + =

+ + =
  (34) 

where 
x d
e x x= −  and 

y d
e y y= − . The proportional-derivative (PD) gains are chosen as 

0
ip
k > and 0

id
k > for 1,2i = . Knowing the control inputs 

1
u , 

2
u  for the linearized system 
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one can calculate the control inputs v  and ω applied to the robotic vehicle, using Eq. (24). 
The above result is valid, provided that the dynamic feedback compensator does not need 

the singularity 0== iv ξ . The following theorem assures the avoidance of singularities in 

the proposed control law [Oriolo, G. et al., (2002)]:  

Theorem: Let 
11
λ , 

12
λ  and 

21
λ , 

22
λ , be respectively the eigenvalues of two equations of the 

error dynamics, given in Eq. (34). Assume that, for 1,2i =  it is 
1 2

0
i i
λ λ< < (negative real 

eigenvalues), and that 
2i

λ is sufficiently small. If 

 

0

00

( )
min || || | |

( )

d x

t

yd

x t

y t

ε

ε

• •

•≥ •

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ > ⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

  (35) 

with 
0

(0) 0x xε ε
• •

= ≠ and 
0

(0) 0y yε ε
• •

= ≠ , then the singularity 0ξ = is never met.  

3. Fusion of distributed measurements using the Extended Kalman Filter  

The control law for the unicycle robot described in subsection 2.2. was based on the 

assumption that the vehicle's state vector [ ( ), ( ), ( )]x k y k kθ was measurable at every time 

instant. Here, the case in which the vehicle's state vector is reconstructed through the fusion 

of measurements received from distributed sensors (such as odometer or sonar sensors) will 

be examined.  

The first approach to be analyzed is that of fusion of measurements coming from distributed 

sensors, with the use of nonlinear filtering methods such as Extended Kalman Filtering 

(EKF). The fused data are used to reconstruct the state vector of a mobile robot, and the 

estimated state vector is in turn used in a control-loop.   

Extended Kalman Filtering for the nonlinear state-measurement model is revised. The 

following nonlinear time-invariant state model is now considered [Rigatos, G.G. & 

Tzafestas, S.G. (2007)]: 

 
)())(()(

)()()())(()1(

kvkxkz

kwkukLkxkx

+=
++=+

γ
φ

  (36) 

where ( )w k and ( )v k are uncorrelated, Gaussian zero-mean noise processes with 

covariance matrices ( )Q k and ( )R k respectively. The operators )(xφ and )(xγ  are given by, 

T
m xxxx ]),(),...,(),([)( 21 φφφφ = , and 

1 2
( ) [ ( ), ( ),..., ( )]T

p
x x x xγ γ γ γ= , respectively. It is 

assumed that φ  and γ are sufficiently smooth in x  so that each one has a valid series 

Taylor expansion. Following a linearization procedure, φ  is expanded into Taylor series 

about x̂ : 

 ...)]()())[(())(())((
^^^

+−+= kxkxkxJkxkx φφφ   (37)                          
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where )(xJφ is the Jacobian of φ  calculated at ˆ( )x k : 
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  (38)                          

Likewise, γ  is expanded about 
^

( )x k
−

 

 
^ ^ ^

( ( )) ( ( )) ( ( ))[ ( ) ( )] ...x k x k J x k x k x kλγ γ= + − +   (39) 

where 
^

( )x k
−

is the prior to time instant k estimation of the state vector ( )x k , and ˆ( )x k is 

the estimation of )(kx at time instant k . The Jacobian ( )J xγ is 

 
^

1 1 1

1 2

2 2 2

1 2
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... ... ... ...

...

N

N
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x

x x x

γ
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γ

ϑ

γ γ γ

−

=

∂ ∂ ∂⎛ ⎞
⎜ ⎟∂ ∂ ∂⎜ ⎟
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 (40)                          

The resulting expressions create first order approximations of φ  and γ . Thus the linearized 

version of the plant is obtained: 

^ ^ ^

_^ ^ ^

( 1) ( ( )) ( ( ))[ ( ) ( )] ( )

( ) ( ( )) ( ( ))[ ( ) ( )] ( )

x k x k J x k x k x k w k

z k x k J x k x k x k v k

ϕ

γ

ϕ

γ
− −

+ = + − +

= + − +
    

Now, the EKF recursion is as follows: First the time update is considered: by ˆ( )x k   the 

estimation of the state vector at instant k is denoted. Given initial conditions 
^

(0)x
−

 and  

 P-(0)the recursion proceeds as: 

• Measurement update.  Acquire )(kz  and compute: 

 

_ _ _^ ^ ^
1

_ _^ ^ ^

_^

( ) ( ) ( ( ))[ ( ( )) ( ) ( ( )) ( )]

( ) ( ) ( )[ ( ) ( ( ))]

( ) ( ) ( ) ( ( )) ( )

T TK k P k J x k J x k P k J x k R k

x k x k K k z k x k

P k P k K k J x k P k

γ γ γ

γ

γ

− − −

− −

= +

= + −

= −

 (41)                          
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• Time update. Compute: 

 

)()())(()1(

)())(()())(()1(

^^

^^

kukLkxkx

kQkxJkPkxJkP T

+=+

+=+
−

−

φ

φφ
  (42) 

The schematic diagram of the EKF loop is given in Fig. 1(a). 

 
Fig. 1. (a) Schematic diagram of the Extended Kalman Filter Loop 

 
Fig. 1.  (b) Schematic diagram of the Particle Filter loop 
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4. Particle Filtering for the nonlinear state-measurement model  

4.1 Particle Filtering with sequential importance resampling  

Next, the problem of fusing measurements coming from distributed sensors will be solved 

using the Particle Filtering method. The fused data are used again to estimate the state 

vector of a mobile robot and the reconstructed state vector will be used in closed-loop 

control.  

In the general case the equations of the optimal filter used for the calculation of the state-

vector of a nonlinear dynamical system do not have an explicit solution. This happens for 

instance when the process noise and the noise of the output measurement do not follow a 

Gaussian distribution. In that case, approximation through Monte-Carlo methods can used. 

As in the case of the Kalman Filter or the Extended Kalman Filter the particles filter consists 

of the measurement update (correction stage) and the time update (prediction stage) [Thrun, 

S. et al., (2005)]. 

a. The prediction stage: 

The prediction stage calculates ( ( ) | )p x k Z − where { (1),.., ( 1)}Z z z n− = − , using: 

 
1

1
1

( ( 1) | ) ( ( 1))i
k

N
i

k
i

p x k Z w x k
ξ
δ

−

−
−

=

− = −∑   (43) 

while from Bayes formula it holds ( ( 1) | ) ( ( ) | ( 1)) ( ( 1) | )p x k Z p x k x k p x k Z dx− −− = − −∫ . 

This finally gives 
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with  ~ ( ( ) | ( 1))
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kk
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−
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−
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− =

∑
  (44) 

The meaning of Eq. (44) is as follows: the state equation of the nonlinear system of Eq. (36) is 

executed  N times, starting from the N  previous values of the state vectors 
1

( 1) i

k
x k ξ −− =  

with the use of Eq. (36). This means that the value of the state vector which is calculated in 

the prediction stage is the result of the weighted averaging of the state vectors which were 

calculated after running the state equation, starting from the N  previous values of the state 

vectors 
1

i

k
ξ − . 

b. The correction stage 
The a-posteriori probability density was performed using Eq. (44). Now a new position 

measurement z(k) is obtained and the objective is to calculate the corrected probability 

density ( ( ) | )p x k Z , where  { (1), (2),.., ( )}.Z z z z k=  From Bayes law it holds that 

( | ( )) ( ( ))
( ( ) | )

( )

p Z x k p x k
p x k Z

p Z
= , which finally results into 

1
1

( ( ) | ) ( ( ))i

k

N
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k
i

p x k Z w x k
ξ
δ

−

−
−

=

=∑                  
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 where  
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Eq. (45) denotes the corrected value for the state vector. The recursion of the Particle Filter 
proceeds in a way similar to the update of the Kalman Filter or the Extended Kalman Filter, 
i.e.: 

Measurement update: Acquire )(kz and compute the new value of the state vector 
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  (46)                       

Resample for substitution of the degenerated particles. 

Time update: compute state vector )1( +kx according to 

 

1

i

k

( ( 1) | ) ( ( ))

where  ~ ( ( 1) | ( ) )

i
k

N
i

k
i

i

k

p x k Z w x k

p x k x k

ξ
δ

ξ ξ

=

+ =

+ =

∑
  (47) 

The stages of state vector estimation with the use of the particle filtering algorithm are 
depicted in Fig. 1(b). 

4.2 Resampling issues in particle filtering  
a. Degeneration of particles 
The algorithm of particle filtering which is described through Eq. (44) and Eq. (45) has a 

significant drawback: after a certain number of iterations k , almost all the weights 
i

k
w become 0 . In the ideal case all the weights should converge to the value 1/ N , i.e.  the 

particles should have the same significance. The criterion used to define a sufficient number 

of particles is 2

1

1/   [1, ]
N

eff i

k k
i

N w N
=

= ∈∑ . When eff

k
N  is close to value N then all particles 

have almost the same significance. However using the algorithm of  Eq. (44) and Eq. (45) 

results in 1eff

k
N → , which means that the particles are degenerated, i.e. they lose their 

effectiveness. Therefore, it is necessary to modify the algorithm so as to assure that 
degeneration of the particles will not take place [Crisan, D. & Doucet, A. (2002)]. 

When eff

k
N is small then most of the particles have weights close to 0 and consequently they 

have a negligible contribution to the estimation of the state vector. The concept proposed to 
overcome this drawback of the algorithm is to weaken this particle in favor of particles that 
have a non-negligible contribution. Therefore, the particles of low weight factors are 
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removed and their place is occupied by duplicates of the particles with high weight factors. 

The total number of particles remains unchanged (equal to N ) and therefore this procedure 

can be viewed as a "resampling" or "redistribution" of the particles set. 
The particles resampling mentioned above maybe slow if not appropriately tuned. There are 
improved versions of it which substitute the particles of low importance with those of 
higher importance [Arulampalam, S. et al., (2002)], [Kitagawa, (1996)]. A first choice would 

be to perform a multinomial resampling. N  particles are chosen between 1{ ,..., }N
k k
ξ ξ  and 

the corresponding weights are 1{ ,..., }N
k k
w w . The number of times each particle is selected is 

given by 
1

[ ,.., ]
N

j j . Thus a set of N particles is again created, the elements of which are 

chosen after sampling with the discrete distribution 
1

( )i
k

N
i

k
i

w x
ξ
δ

=
∑ . The particles 

1{ ,..., }N
k k
ξ ξ are chosen according to the probabilities 1{ ,.., }N

k k
w w . The selected particles are 

assigned with equal weights 1/N. 
b. Other approaches to the implementation of resampling  
Although sorting of the particles' weights is not necessary for the convergence of the particle 

filter algorithm, there are variants of the resampling procedure of ( , ,   1,.., )i i

k k
w i Nξ = which 

are based on previous sorting in decreasing order of the particles' weights. It is noted that 
efficient sorting approaches make the complexity of the particle filtering to be O(Nlog(N)), 

while the avoidance of resampling could result in a faster algorithm of complexity ( )O N . 

Sorting of particles' weights gives [1] [2] [ ]...s s s Nw w w> > > . A random numbers generator is 

evoked and the resulting numbers : ~ [0,1]i Nu U  fall in the partitions of the interval ]1,0[ . 

The width of these partitions is iw and thus a redistribution of the particles is generated. For 

instance, in a wide partition of width jw will be assigned more particles than to a narrow 

partition of width mw .  
Two other methods that have been proposed for the implementation of resampling in 
Particle Filtering are explained in the sequel. These are Kitagawa's approach and the 
residuals resampling approach [Kitagawa, G. (1996)]. In Kitagawa's resampling the speed of 
the resampling procedure is increased by using less the random numbers generator. The 

weights are sorted again in decreasing order [ ]s jw  so as to cover the region that corresponds 
to the interval [0,1]. Then the random numbers generator is used to produce the variable ui 

according to according to
1

~ [0,1/ ]u U N , and 
1 ,  2,..,i i

u u i N
N

= + = . The rest of the 

variables iu are produced in a deterministic way  [Campillo, F. (2006)].  
In the residuals resampling approach, the redistribution of the residuals is performed as 

follows: at a first stage particle iξ  is chosen in a deterministic way [ / ]iw N times (with 

rounding). The residual weights are 
~

[ / ]
i

i iw w N w N= −  and are normalized. Thus, a 

probability distribution is generated. The rest of the particles are selected according to 

multinomial resampling . The method can be applied if the number 
~

N  which remains at the 

second stage is small, i.e. when 2

1

1/
N

eff

i
i

N w
=

= ∑  is small. 
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5. Simulation tests 

5.1 Flatness-based control using a state vector estimated by EKF  

The application of EKF to the fusion of data that come from different sensors is examined 
first [Rigatos, G.G. & Tzafestas, S.G. (2007)]. A unicycle robot is considered. Its continuous-
time kinematic equation is: 

 ( ) ( ) cos( ( )),   ( ) ( )sin( ( )),   (t) (t)  x t v t t y t v t tθ θ θ ω
• • •

= = =   (48)                          

Encoders are placed on the driving wheels and provide a measure of the incremental angles 
over a sampling period T . These odometric sensors are used to obtain an estimation of the 

displacement and the angular velocity of the vehicle )(tv  and )(tω , respectively.  These 

encoders introduce incremental errors, which result in an erroneous estimation of the 
orientation θ . To improve the accuracy of the vehicle's localization, measurements from 

sonars can be used. The distance measure of sonar i from a neighboring surface 
j
P is thus 

taken into account (see Fig. 2(a) and Fig. 2(b)).  Sonar measurements may be affected by 
white Gaussian noise and also by crosstalk interferences and multiples echoes.  

     

Fig. 2. (a). Mobile robot with odometric and            Fig. 2.  (b). Orientation of the sonar i  

sonar sensors 

The inertial coordinates system OXY is defined. Furthermore the coordinates system 
' ' 'O X Y is considered (Fig. 2(a)). ' ' 'O X Y results from OXY if it is rotated by an angle θ . The 

coordinates of the center of the wheels axis with respect to OXY are ),( yx , while the 

coordinates of the sonar i  that is mounted on the vehicle, with respect to ' ' 'O X Y  are  ' ',
i i
x y . 

The orientation of the sonar with respect to ' ' 'O X Y is '

i
θ . Thus the coordinates of the sonar 

with respect to OXY are ( , )
i i
x y  and its orientation is 

i
θ , and are given by: 

 

' '

' '

( ) ( ) sin( ( )) sin( ( ))

( ) ( ) sin( ( )) sin( ( ))

( ) ( )

i i i

i i i

i i

x k x k x k y k

x k x k x k y k

k k

θ θ
θ θ

θ θ θ

= + +
= + +

= +
  (49)                          
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Each plane jP in the robot's environment can be represented by j

r
P and  j

n
P  (Fig. 2(b)), 

where (i) j

r
P is the normal distance of the plane from the origin O, (ii) j

n
P is the angle 

between the normal line to the plane and the x-direction. 

The sonar i  is at position ( ( ), ( ))
i i
x k y k with respect to the inertial coordinates system 

OXY and its orientation is ( )
i
kθ . Using the above notation, the distance of the sonar i , 

from the plane jP  is represented by ,j j

r n
P P  (see Fig. 2(b)): 

 ( ) ( )cos( ) ( )sin( )k j j j

i r i n i n
d k P x k P y k P= − −   (50)                          

where      [ ( ) / 2, ( ) / 2]j

n i i
P n nθ δ θ δ∈ − + , and δ is the width of the sonar beam. Assuming 

a constant sampling period 
k
t TΔ = the measurement equation is ( 1) ( ( )) ( )z k x k v kγ+ = + , 

where )(kz is the vector containing sonar and odometer measures and )(kv  is a white noise 

sequence ~ (0, ( ))N R kT . The dimension kp  of )(kz depends on the number of sonar 

sensors. The measure vector )(kz can be decomposed in two sub-vectors 

 
)]()(),...,()([)1(

)]()(),()(),()([)1(

23412

3211

kvkdkvkdkz

kvkkvkykvkxkz

n
j

n

j

s
+++=+
+++=+ θ

 (51)                          

with 1,2,...,
s

i n= , where 
s
n is the number of sonars, ( )j

i
d k  is the distance measure with 

respect to the plane jP provided by the i -th sonar and 1,..,
p

j n= where 
p
n is the number 

of surfaces. By definition of the measurement vector one has that the output function 

( ( ))x kγ is given by  1 2

1 2
( ( )) [ ( ), ( ), ( ), ( ), ( ),..., ]p

s

n T

n
x k x k y k k d k d k dγ θ= . The robot state is 

[ ( ), ( ), ( )]Tx k y k kθ and the control input is denoted by ( ) [ ( ), ( )]TU k u k kω= . 

In the simulation tests, the number of sonar is taken to be 1
s
n = , and the number of planes 

1
p
n = , thus the measurement vector becomes s. To obtain the Extended Kalman Filter 

(EKF), the kinematic model of the vehicle is linearized about the estimates 
^

( )x k  and 
^

( )x k
−

, 

the control input ( 1)U k −  is applied. 

The measurement update of the EKF is 

_ _ _^ ^ ^
1

_ _^ ^ ^

_^

( ) ( ) ( ( ))[ ( ( )) ( ) ( ( )) ( )]

( ) ( ) ( )[ ( ) ( ( ))]

( ) ( ) ( ) ( ( )) ( )

T TK k P k J x k J x k P k J x k R k

x k x k K k z k x k

P k P k K k J x k P k

γ γ γ

γ

γ

− − −

− −

= +

= + −

= −

 

The time update of the EKF is  

)()())(()1(

)())(()())(()1(

^^

^^

kukLkxkx

kQkxJkPkxJkP T

+=+

+=+
−

−
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where  

cos( ( )) 0

( ) sin( ( )) 0

0

T k

L n T k

T

θ
θ

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 and  
^

1 0 ( )sin( )

( ( )) 0 1 ( ) cos( )

0 0 1

v k T

J x k v k Tϕ

θ
θ

−⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎝ ⎠

  

while 2 2 2( ) [ ( ), ( ), ( )]Q k diag k k kσ σ σ= , with 2 ( )kσ chosen to be 310− , and 

 Tkkykxkx )](),(),([))((
^^^^

θφ = , 
^ ^ ^ ^

( ( )) [ ( ), ( ), ( ), ( )]Tx k x k y k k d kγ θ= , i.e. 

 

^

^
^

^

( )

( )
( ( ))

( )

( ) cos( ) ( )sin( )j j j

r i n i n

x k

y k
x k

k

P x k P y k P

γ
θ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟− −⎝ ⎠

 (52)                          

Assuming one sonar 1
s
n = , and one plane 

1P , 1
p
n = in the mobile robot's neighborhood 

one gets   

 
^

' '

1 0 0

0 1 0
( ( ))

0 0 1

cos( ) sin( ) { cos( ) sin( )}

T

j j j j

n n i n i n

J x k

P P x P y P

γ

θ θ

−

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
− − − − −⎝ ⎠

 (53)  

The vehicle is steered by a dynamic feedback linearization control algorithm which is based 

on flatness-based  control [Oriolo, G. et al., (2002)]: 

 

1 1

2 2

1

2

1 2

2 1

( ) ( )

( ) ( )

cos( ) sin( )

cos( ) sin( )
,   

d dp d d

d dp d d

u x K x x K x x

u y K y y K y y

u u

u u
v

ξ θ θ
θ θ

ξ ω
ξ

•• • •

•• • •

•

= + − + −

= + − + −

= +
−

= =

  (54)                          

The following initialization is assumed (see Fig. 3(a)): (i) vehicle’s initial position in OXY : 

mx  0)0( = , my  0)0( = , (0) 45.0oθ = , (ii) position of the sonar in ' ' 'O X Y : 
'

1
0.5 x m= , 

'

1
0.5 y m= , '

1
0oθ = , (iii) position  of the plane 1 1 1:  15.5 ,   45 o

r n
P P m P= = , (iv) state noise 

( ) 0w k = , 
^

(0) [0.1,0.1,0.1]P diag= and 3 3 3[10 ,10 ,10 ]R diag − − −= , (v) Kalman Gain  

3 4( )    K k R ×∈  

The use of EKF for fusing the data that come from odometric and sonar sensors provides an 

estimation of the state vector )](),(),([ ttytx θ  and enables the successful application of 
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nonlinear steering control of Eq. (54). For the case of motion along a straight line on the 2D-

plane, the obtained results are depicted in Fig. 3(a).  Moreover, results on the tracking of a 

circular reference path are given in Fig. 4(a), while the case of tracking of an eight-shaped 

reference path is depicted in Fig. 5(a). Tracking experiments for EKF-based state estimation 

were completed in the case of a curved path as the one shown in Fig. 6(a). 

5.2 Flatness-based control using a state vector estimated by Particle Filtering  

The particle filter can also provide solution to the sensor fusion problem. The mobile robot 

model described in Eq. (48), and the control law given in Eq. (54) are used again. The 

number of particles was set to 1000=N . 

The measurement update of the PF is 
1

( ( ) | ) ( ( ))i

k

N
i

k
i

p x k Z w x k
ξ
δ

−=

=∑  with 

1

( ( ) | ( ) )

( ( ) | ( ) )

i i

i k k

k N
j j

k k
j

w p z k x k
w

w p z k x k

ξ

ξ

− −

−
=

=
=

=∑
 where the measurement equation is given by 

^

( ) ( ) ( )z k z k v k= + with ( ) [ ( ), ( ), ( ), ( )]Tz k x k y k k d kθ= , and  ( )v k = measurement noise. 

The time update of the PF is 
1

( ( 1) | ) ( ( ))i
k

N
i

k
i

p x k Z w x k
ξ
δ

=

+ =∑  where 

~ ( ( 1) | ( ) )i i

k k
p x k x kξ ξ+ = and the state equation is 

^

( ( )) ( ) ( )x x k L k U kϕ
−

= + , where 

))(( kxφ , )(kL and )(kU  are defined in subsection 5.1. At each run of the time update of 

the PF, the state vector estimation 
^

( 1)x k
−

+  is calculated N times, starting each time from a 

different value of the state vector i

k
ξ . The measurement noise distribution was assumed to 

be Gaussian. As the number of particles increases, the performance of the particle filter-

based tracking algorithm also improves, but this happens at higher demand for 

computational resources. Control of the diversity of the particles through the tuning of 

the resampling procedure may also affect the performance of the algorithm. The 

obtained results are given in Fig. 3(b) for the case of motion along a straight line on the 

2D plane. Additionally, results on the tracking of a circular reference path are given in 

Fig. 4(b), while the case of tracking of an eight-shaped reference path is depicted in Fig. 

5(b). Tracking experiments for PF-based state estimation were completed in the case of a 

curved path as the one shown in Fig. 6(b). 

From the depicted simulation experiments it can be deduced that the particle filter for a 

sufficiently large number of particles can have good performance, in the problem of 

estimation of the state vector of the mobile robot, without being subject to the constraint of 

Gaussian distribution for the obtained measurements. The number of particles influences 

the performance of the particle filter algorithm. The accuracy of the estimation succeeded by 

the PF algorithm improves as the number of particles increases. The initialization of the 

particles, (state vector estimates) may also affect the convergence of the PF towards the real 

value of the state vector of the monitored system. It should be also noted that the calculation 

time is a critical parameter for the suitability of the PF algorithm for real-time applications. 
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When it is necessary to use more particles, improved hardware and parallel processing 

available to embedded systems, enable the PF to be implemented in real-time systems  

[Yang, N. et al., (2005)]. 
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Fig. 5. (a) Desirable trajectory (continuous 
line) and trajectory using EKF fusion based 
on odometric and sonar measurements, 
when tracking a straight line. 

Fig. 5. (b) Desirable trajectory (continuous 
line) and trajectory using PF fusion based on 
odometric and sonar measurements, when 
tracking a straight line. 

 
 
 

  

Fig. 4. (a)  The trajectory of the mobile robot 
(dashed  line) tracks the reference circular 
path (continuous line) when the robot’s state 
vector is estimated with the use of Extended 
Kalman Filtering. 

Fig. 4. (b) The trajectory of the mobile robot 
(dashed line) tracks the reference circular 
path (continuous line) when the robot’s 
state vector is estimated with the use of 
particle filtering. 
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Fig. 5. (a)  The trajectory of the mobile robot 
(dashed  line) tracks the reference eight-
shaped path (continuous line) when the 
robot’s state vector is estimated with the use 
of Extended Kalman Filtering. 

Fig. 5. (b) The trajectory of the mobile robot 
(dashed line) tracks the reference eight-
shaped path (continuous line) when the 
robot’s state vector is estimated with the 
use of Particle Filtering. 

 

  

Fig. 6. (a)  The trajectory of the mobile robot 
(dashed  line) tracks the reference curve-
shaped path (continuous line) when the 
robot’s state vector is estimated with the use 
of Extended Kalman Filtering. 

Fig. 6. (b) The trajectory of the mobile robot 
(dashed line) tracks the reference curve-
shaped path (continuous line) when the 
robot’s state vector is estimated with the use 
of Particle Filtering. 

6. Conclusions 

The paper has studied flatness-based control and sensor fusion for motion control of 
autonomous mobile robots. Flatness-based control stems from the concept of differential 
flatness, i.e. of the ability to express the system parameters (such as the elements of the state 
vector) and the control input as relations of a function y  called flat output and of its higher 
order derivatives.  Flatness-based control affects the dynamics of the system  in a way similar 
to control through feedback-linearization. This means that writing the system variables and 
the control input as functions of the flat output enables transformation of the system dynamics 
into a linear ODE and subsequently permits trajectory tracking using linear control methods.  
For linear systems differential-flatness coincides with the property of controllability. Flatness-
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based control is applicable to finite dimensional systems (linear or nonlinear) as well as to 
infinite dimensional systems, such as the ones usually described by PDE. 
The problem of motion control of the mobile robots becomes more complicated when the 
robot's state vector is not directly measurable but has to be reconstructed with the use of 
measurements coming from distributed sensors. Consequently, the control input generated 
by the flatness-based control algorithm has to use the estimated state vector of the robotic 
vehicle instead of the real one. Extended Kalman and Particle filtering have been tested in 
the problem of estimation of the state vector of a mobile robot through the fusion of position 
measurements coming from odometric and sonar sensors. The paper has summarized the 
basics of the Extended Kalman Filter, which is the most popular approach to implement 
sensor fusion in nonlinear systems. The EKF is a linearization technique, based of a first-
order Taylor expansion of the nonlinear state functions and the nonlinear measurement 
functions of the state model. In the EKF, the state distribution is approximated by a 
Gaussian random variable. Although the EKF is a fast algorithm, the underlying series 
approximations can lead to poor representations of the nonlinear functions and the 
associated probability distributions. As a result, the EKF can sometimes be divergent. 
To overcome these weekness of the EKF as well as the constraint of the Gaussian state 
distribution, particle filtering has been introduced. Whereas the EKF makes a Gaussian 
assumption to simplify the optimal recursive state estimation, the particle filter makes no 
assumptions on the forms of the state vector and measurement probability densities. In the 
particle filter, a set of weighted particles (state vector estimates evolving in parallel) is used 
to approximate the posterior distribution of the state vector. An iteration of the particle filter 
includes particle update and weights update. To succeed the convergence of the algorithm 
at each iteration resampling takes place through which particles with low weights are 
substituted by particles of high weights. 
Simulation tests have been carried out to evaluate the performance of flatness-based control 
for the autonomous mobile robot, when using the EKF and the particle filter for the 
localization of the robotic vehicle (through the fusion of measurements coming from 
distributed sensors). It has been shown, that comparing to EKF, the PF algorithm results in 
better estimates of the mobile robot's state vector as the number of particles increases, but on 
the expense of higher computational effort. Consequently, the flatness-based controller 
which used the robot's state vector coming from the particle filter, had better tracking 
performance than the flatness-based controller which used the robot's state vector that was 
estimated by the EKF. It has been also observed that the accuracy in the localization of the 
mobile robot, succeeded by the particle filter algorithm depends on the number of particles 
and their initialization.                                                                                                                                                    
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