51 research outputs found

    Time to pregnancy : a computational method for using the duration of non-conception for predicting conception

    Get PDF
    An important problem in reproductive medicine is deciding when people who have failed to become pregnant without medical assistance should begin investigation and treatment. This study describes a computational approach to determining what can be deduced about a couple's future chances of pregnancy from the number of menstrual cycles over which they have been trying to conceive. The starting point is that a couple's fertility is inherently uncertain. This uncertainty is modelled as a probability distribution for the chance of conceiving in each menstrual cycle. We have developed a general numerical computational method, which uses Bayes' theorem to generate a posterior distribution for a couple's chance of conceiving in each cycle, conditional on the number of previous cycles of attempted conception. When various metrics of a couple's expected chances of pregnancy were computed as a function of the number of cycles over which they had been trying to conceive, we found good fits to observed data on time to pregnancy for different populations. The commonly-used standard of 12 cycles of non-conception as an indicator of subfertility was found to be reasonably robust, though a larger or smaller number of cycles may be more appropriate depending on the population from which a couple is drawn and the precise subfertility metric which is most relevant, for example the probability of conception in the next cycle or the next 12 cycles. We have also applied our computational method to model the impact of female reproductive ageing. Results indicate that, for women over the age of 35, it may be appropriate to start investigation and treatment more quickly than for younger women. Ignoring reproductive decline during the period of attempted conception added up to two cycles to the computed number of cycles before reaching a metric of subfertility

    Consent agreements for cryopreserved embryos : the case for choice

    Get PDF
    Under current UK law, an embryo cannot be transferred to a woman’s uterus without the consent of both of its genetic parents, that is both of the people from whose gametes the embryo was created. This consent can be withdrawn at any time before the embryo transfer procedure. Withdrawal of consent by one genetic parent can result in the other genetic parent losing the opportunity to have their own genetic children. We argue that offering couples only one type of consent agreement, as happens at present, is too restrictive. An alternative form of agreement, in which one genetic parent agrees to forego the right to future withdrawal of consent, should be available alongside the current form of agreement. Giving couples such a choice will better enable them to store embryos under a consent agreement that is appropriate for their circumstances. Allowing such a choice, with robust procedures in place to ensure the validity of consent, is the best way to respect patient autonomy

    Apoptosis in mouse fetal and neonatal oocytes during meiotic prophase one

    Get PDF
    Background The vast majority of oocytes formed in the fetal ovary do not survive beyond birth. Possible reasons for their loss include the elimination of non-viable genetic constitutions arising through meiosis, however, the precise relationship between meiotic stages and prenatal apoptosis of oocytes remains elusive. We studied oocytes in mouse fetal and neonatal ovaries, 14.5–21 days post coitum, to examine the relationship between oocyte development and programmed cell death during meiotic prophase I. Results Microspreads of fetal and neonatal ovarian cells underwent immunocytochemistry for meiosis- and apoptosis-related markers. COR-1 (meiosis-specific) highlighted axial elements of the synaptonemal complex and allowed definitive identification of the stages of meiotic prophase I. Labelling for cleaved poly-(ADP-ribose) polymerase (PARP-1), an inactivated DNA repair protein, indicated apoptosis. The same oocytes were then labelled for DNA double strand breaks (DSBs) using TUNEL. 1960 oocytes produced analysable results. . Oocytes at all stages of meiotic prophase I stained for cleaved PARP-1 and/or TUNEL, or neither. Oocytes with fragmented (19.8%) or compressed (21.2%) axial elements showed slight but significant differences in staining for cleaved PARP-1 and TUNEL to those with intact elements. However, fragmentation of axial elements alone was not a good indicator of cell demise. Cleaved PARP-1 and TUNEL staining were not necessarily coincident, showing that TUNEL is not a reliable marker of apoptosis in oocytes. Conclusions Our data indicate that apoptosis can occur throughout meiotic prophase I in mouse fetal and early postnatal oocytes, with greatest incidence at the diplotene stage. Careful selection of appropriate markers for oocyte apoptosis is essential

    Consent agreements for cryopreserved embryos : the case for choice

    Get PDF
    Under current UK law, an embryo cannot be transferred to a woman’s uterus without the consent of both of its genetic parents, that is both of the people from whose gametes the embryo was created. This consent can be withdrawn at any time before the embryo transfer procedure. Withdrawal of consent by one genetic parent can result in the other genetic parent losing the opportunity to have their own genetic children. We argue that offering couples only one type of consent agreement, as happens at present, is too restrictive. An alternative form of agreement, in which one genetic parent agrees to forego the right to future withdrawal of consent, should be available alongside the current form of agreement. Giving couples such a choice will better enable them to store embryos under a consent agreement that is appropriate for their circumstances. Allowing such a choice, with robust procedures in place to ensure the validity of consent, is the best way to respect patient autonomy

    Unique geometry of sister kinetochores in human oocytes during meiosis I may explain maternal age-associated increases in chromosomal abnormalities

    Get PDF
    The first meiotic division in human oocytes is highly error-prone and contributes to the uniquely high incidence of aneuploidy observed in human pregnancies. A successful meiosis I (MI) division entails separation of homologous chromosome pairs and co-segregation of sister chromatids. For this to happen, sister kinetochores must form attachments to spindle kinetochore-fibres emanating from the same pole. In mouse and budding yeast, sister kinetochores remain closely associated with each other during MI, enabling them to act as a single unified structure. However, whether this arrangement also applies in human meiosis I oocytes was unclear. In this study, we perform high-resolution imaging of over 1900 kinetochores in human oocytes, to examine the geometry and architecture of the human meiotic kinetochore. We reveal that sister kinetochores in MI are not physically fused, and instead individual kinetochores within a pair are capable of forming independent attachments to spindle k-fibres. Notably, with increasing female age, the separation between kinetochores increases, suggesting a degradation of centromeric cohesion and/or changes in kinetochore architecture. Our data suggest that the differential arrangement of sister kinetochores and dual k-fibre attachments may explain the high proportion of unstable attachments that form in MI and thus indicate why human oocytes are prone to aneuploidy, particularly with increasing maternal age

    Immature oocytes grow during in vitro maturation culture

    Get PDF
    BACKGROUND. Oocyte competence for maturation and embryogenesis is associated with oocyte diameter in many mammals. This study aimed to test whether such a relationship exists in humans and to quantify its impact upon in vitro maturation (IVM). METHODS. We used computer-assisted image analysis daily to measure average diameter, zona thickness and other parameters in oocytes. Immature oocytes originated from unstimulated patients with polycystic ovaries, and from stimulated patients undergoing ICSI. They were cultured with or without meiosis activating sterol (FF-MAS). Oocytes maturing in vitro were inseminated using ICSI and embryo development was monitored. A sample of freshly collected in vivo matured oocytes from ICSI patients were also measured. RESULTS. Immature oocytes were usually smaller at collection than in vivo matured oocytes. Capacity for maturation was related to oocyte diameter and many oocytes grew in culture. FF-MAS stimulated growth in ICSI derived oocytes, but only stimulated growth in PCO derived oocytes if they eventually matured in vitro. Oocytes degenerating showed cytoplasmic shrinkage. Neither zona thickness, perivitelline space, nor the total diameter of the oocyte including the zona were informative regarding oocyte maturation capacity. CONCLUSIONS. Immature oocytes continue growing during maturation culture. FF-MAS promotes oocyte growth in vitro. Oocytes from different sources have different growth profiles in vitro. Measuring diameters of oocytes used in clinical IVM may provide additional non-invasive information that could potentially identify and avoid the use of oocytes that remain in the growth phase

    Five-year study assessing the clinical utility of anti-Müllerian hormone measurements in reproductive-age women with cancer

    Get PDF
    An important discussion point before chemotherapy is ovarian toxicity, a side-effect that profoundly affects young women with cancer. Their quality of life after successful treatment, including the ability to conceive, is a major concern. We asked whether serum anti-Müllerian hormone (AMH) measurements before chemotherapy for two most common malignancies are predictive of long-term changes in ovarian reserve? A prospective cohort study measured serum AMH in 66 young women with lymphoma and breast cancer, before and at 1 year and 5 years after chemotherapy, compared with 124 healthy volunteers of the same age range (18-43 years). Contemporaneously, patients reported their menses and live births during 5-year follow-up. After adjustment for age, serum AMH was 1.4 times higher (95% CI 1.1 to 1.9; P < 0.02) in healthy volunteers than in cancer patients before chemotherapy. A strong correlation was observed between baseline and 5-year AMH in the breast cancer group (P < 0.001, regression coefficient = 0.58, 95% CI 0.29 to 0.89). No significant association was found between presence of menses at 5 years and serum AMH at baseline (likelihood ratio test from logistics regression analysis). Reproductive-age women with malignancy have lower serum AMH than healthy controls even before starting chemotherapy. Pre-chemotherapy AMH was significantly associated with long-term ovarian function in women with breast cancer. At key time points, AMH measurements could be used as a reproductive health advisory tool for young women with cancer. Our results highlight the unsuitability of return of menstruation as a clinical indicator of ovarian reserve after chemotherapy. [Abstract copyright: Crown Copyright © 2019. Published by Elsevier Ltd. All rights reserved.

    Modelling the impact of decidual senescence on embryo implantation in human endometrial assembloids.

    Get PDF
    Decidual remodelling of midluteal endometrium leads to a short implantation window after which the uterine mucosa either breaks down or is transformed into a robust matrix that accommodates the placenta throughout pregnancy. To gain insights into the underlying mechanisms, we established and characterized endometrial assembloids, consisting of gland-like organoids and primary stromal cells. Single-cell transcriptomics revealed that decidualized assembloids closely resemble midluteal endometrium, harbouring differentiated and senescent subpopulations in both glands and stroma. We show that acute senescence in glandular epithelium drives secretion of multiple canonical implantation factors, whereas in the stroma it calibrates the emergence of anti-inflammatory decidual cells and pro-inflammatory senescent decidual cells. Pharmacological inhibition of stress responses in pre-decidual cells accelerated decidualization by eliminating the emergence of senescent decidual cells. In co-culture experiments, accelerated decidualization resulted in entrapment of collapsed human blastocysts in a robust, static decidual matrix. By contrast, the presence of senescent decidual cells created a dynamic implantation environment, enabling embryo expansion and attachment, although their persistence led to gradual disintegration of assembloids. Our findings suggest that decidual senescence controls endometrial fate decisions at implantation and highlight how endometrial assembloids may accelerate the discovery of new treatments to prevent reproductive failure

    Age-dependent loss of cohesion protection in human oocytes

    Get PDF
    Aneuploid human eggs (oocytes) are a major cause of infertility, miscarriage, and chromosomal disorders. Such aneuploidies increase greatly as women age, with defective linkages between sister chromatids (cohesion) in meiosis as a common cause. We found that loss of a specific pool of the cohesin protector protein, shugoshin 2 (SGO2), may contribute to this phenomenon. Our data indicate that SGO2 preserves sister chromatid cohesion in meiosis by protecting a ‘‘cohesin bridge’’ between sister chromatids. In human oocytes, SGO2 localizes to both sub-centromere cups and the pericentromeric bridge, which spans the sister chromatid junction. SGO2 normally colocalizes with cohesin; however, in meiosis II oocytes from older women, SGO2 is frequently lost from the pericentromeric bridge and sister chromatid cohesion is weakened. MPS1 and BUB1 kinase activities maintain SGO2 at sub-centromeres and the pericentromeric bridge. Removal of SGO2 throughout meiosis I by MPS1 inhibition reduces cohesion protection, increasing the incidence of single chromatids at meiosis II. Therefore, SGO2 deficiency in human oocytes can exacerbate the effects of maternal age by rendering residual cohesin at pericentromeres vulnerable to loss in anaphase I. Our data show that impaired SGO2 localization weakens cohesion integrity and may contribute to the increased incidence of aneuploidy observed in human oocytes with advanced maternal age
    corecore