88 research outputs found

    Methicillin-resistant Staphylococcus aureus colonization: a three-year prospective study in a neonatal intensive care unit in Italy.

    Get PDF
    Background: Methicillin resistant Staphylococcus aureus (MRSA) is a major etiological agent of infection in neonatal intensive care units (NICUs). Routes of entry of this organism can be different and the transmission pathway complex. Colonized neonates are the main endogenous reservoir. Methods and Results: We conducted a prospective three-year study on MRSA colonization recruiting 722 neonates admitted between 2009 and 2012. Nasal swabs were cultured weekly and MRSA isolates were submitted to molecular typing. The annual incidence density of acquisition of MRSA ranged from a maximum of 20.2 cases for 1000 patient-days during the first year to a minimum of 8.8 cases in the second one to raise again up to 13.1 cases during the third year. The mean weekly colonization pressure fluctuated from 19.1% in the first year to 13.4% in the second year and 16.8% in the third year. It significantly correlated with the number of MRSA acquisitions in the following week. Overall, 187 (25.9%) subjects tested positive for MRSA. A non multiresistant, tst positive, ST22-MRSA-IVa spa t223 strain proved to be endemic in the NICU, being identified in 166 (88.8%) out of 187 colonized neonates. Sporadic or epidemic occurrence of other strains was detected. Conclusions: An MRSA strain belonging to the tst1 positive, UK-EMRSA-15/ ‘‘Middle Eastern Variant’’ appeared to be endemic in the NICU under investigation. During the three-year period, substantial changes occurred in case-mix of patients moving towards a higher susceptibility to MRSA colonization. The infection control procedures were able to decrease the colonization rate from more than 40% to approximately 10%, except for an outbreak due to a CA-MRSA strain, ST1-MRSAIVa, and a transient increase in the colonization prevalence rate coincident with a period of substantial overcrowding of the ward. Active surveillance and molecular typing contributed to obtain a reliable picture of the MRSA dissemination in NICU

    The Use of Carcasses for the Analysis of Cetacean Population Genetic Structure: A Comparative Study in Two Dolphin Species

    Get PDF
    Advances in molecular techniques have enabled the study of genetic diversity and population structure in many different contexts. Studies that assess the genetic structure of cetacean populations often use biopsy samples from free-ranging individuals and tissue samples from stranded animals or individuals that became entangled in fishery or aquaculture equipment. This leads to the question of how representative the location of a stranded or entangled animal is with respect to its natural range, and whether similar results would be obtained when comparing carcass samples with samples from free-ranging individuals in studies of population structure. Here we use tissue samples from carcasses of dolphins that stranded or died as a result of bycatch in South Australia to investigate spatial population structure in two species: coastal bottlenose (Tursiops sp.) and short-beaked common dolphins (Delphinus delphis). We compare these results with those previously obtained from biopsy sampled free-ranging dolphins in the same area to test whether carcass samples yield similar patterns of genetic variability and population structure. Data from dolphin carcasses were gathered using seven microsatellite markers and a fragment of the mitochondrial DNA control region. Analyses based on carcass samples alone failed to detect genetic structure in Tursiops sp., a species previously shown to exhibit restricted dispersal and moderate genetic differentiation across a small spatial scale in this region. However, genetic structure was correctly inferred in D. delphis, a species previously shown to have reduced genetic structure over a similar geographic area. We propose that in the absence of corroborating data, and when population structure is assessed over relatively small spatial scales, the sole use of carcasses may lead to an underestimate of genetic differentiation. This can lead to a failure in identifying management units for conservation. Therefore, this risk should be carefully assessed when planning population genetic studies of cetaceans

    A new classification of the long-horned caddisflies (Trichoptera: Leptoceridae) based on molecular data

    Get PDF
    Background: Leptoceridae are among the three largest families of Trichoptera (caddisflies). The current classification is founded on a phylogenetic work from the 1980's, based on morphological characters from adult males, i.e. wing venation, tibial spur formula and genital morphology. In order to get a new opinion about the relationships within the family, we undertook a molecular study of the family based on sequences from five genes, mitochondrial COI and the four nuclear genes CAD, EF-1 alpha, IDH and POL. Results: The resulting phylogenetic hypotheses are more or less congruent with the morphologically based classification, with most genera and tribes recovered as monophyletic, but with some major differences. For monophyly of the two subfamilies Triplectidinae and Leptocerinae, one tribe of each was removed and elevated to subfamily status; however monophyly of some genera and tribes is in question. All clades except Leptocerinae, were stable across different analysis methods. Conclusions: We elevate the tribes Grumichellini and Leptorussini to subfamily status, Grumichellinae and Leptorussinae, respectively. We also propose the synonymies of Ptochoecetis with Oecetis and Condocerus with Hudsonema.authorCount :

    Using functional data analysis to understand daily activity levels and patterns in primary school-aged children: Cross-sectional analysis of a UK-wide study

    Get PDF
    Temporal characterisation of physical activity in children is required for effective strategies to increase physical activity (PA). Evidence regarding determinants of physical activity in childhood and their time-dependent patterns remain inconclusive. We used functional data analysis (FDA) to model temporal profiles of daily activity, measured objectively using accelerometers, to identify diurnal and seasonal PA patterns in a nationally representative sample of primary school-aged UK children. We hypothesised that PA levels would be lower in girls than boys at play times and after school, higher in children participating in social forms of exercise (such as sport or play), and lower among those not walking to school.Children participating in the UK-wide Millennium Cohort Study wore an Actigraph GT1M accelerometer for seven consecutive days during waking hours. We modelled 6,497 daily PA profiles from singleton children (3,176 boys; mean age: 7.5 years) by means of splines, and used functional analysis of variance to examine the cross-sectional relation of time and place of measurement, demographic and behavioural characteristics to smoothed PA profiles.Diurnal and time-specific patterns of activity showed significant variation by sex, ethnicity, UK country and season of measurement; girls were markedly less active than boys during school break times than boys, and children of Indian ethnicity were significantly less active during school hours (9:30-12:00). Social activities such as sport clubs, playing with friends were associated with higher level of PA in afternoon (15:00-17:30) and early evenings (17:30-19:30). Lower PA levels between 8:30-9:30 and 17:30-19:30 were associated with mode of travel to and from school, and number of cars in regular use in the household.Diminished PA in primary school aged children is temporally patterned and related to modifiable behavioural factors. FDA can be used to inform and evaluate public health policies to promote childhood PA

    The DISC (Diabetes in Social Context) Study-evaluation of a culturally sensitive social network intervention for diabetic patients in lower socioeconomic groups: a study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Compared to those in higher socioeconomic groups, diabetic patients in lower socioeconomic groups have less favourable metabolic control and experience more diabetes-related complications. They encounter specific barriers that hinder optimal diabetes self-management, including a lack of social support and other psychosocial mechanisms in their immediate social environments. <it>Powerful Together with Diabetes </it>is a culturally sensitive social network intervention specifically targeted to ethnic Dutch, Moroccan, Turkish, and Surinamese diabetic patients in lower socioeconomic groups. For ten months, patients will participate in peer support groups in which they will share experiences, support each other in maintaining healthy lifestyles, and learn skills to resist social pressure. At the same time, their significant others will also receive an intervention, aimed at maximizing support for and minimizing the negative social influences on diabetes self-management. This study aims to test the effectiveness of <it>Powerful Together with Diabetes</it>.</p> <p>Methods/Design</p> <p>We will use a quasi-experimental design with an intervention group (Group 1) and two comparison groups (Groups 2 and 3), N = 128 in each group. Group 1 will receive <it>Powerful Together with Diabetes</it>. Group 2 will receive <it>Know your Sugar</it>, a six-week group intervention that does not focus on the participants' social environments. Group 3 receives standard care only. Participants in Groups 1 and 2 will be interviewed and physically examined at baseline, 3, 10, and 16 months. We will compare their haemoglobin A1C levels with the haemoglobin A1C levels of Group 3. Main outcome measures are haemoglobin A1C, diabetes-related quality of life, diabetes self-management, health-related, and intermediate outcome measures. We will conduct a process evaluation and a qualitative study to gain more insights into the intervention fidelity, feasibility, and changes in the psychosocial mechanism in the participants' immediate social environments.</p> <p>Discussion</p> <p>With this study, we will assess the feasibility and effectiveness of a culturally sensitive social network intervention for lower socioeconomic groups. Furthermore, we will study how to enable these patients to optimally manage their diabetes. This trial is registered in the Dutch Trial Register: NTR1886</p

    Phytoplankton responses to marine climate change – an introduction

    Get PDF
    Phytoplankton are one of the key players in the ocean and contribute approximately 50% to global primary production. They serve as the basis for marine food webs, drive chemical composition of the global atmosphere and thereby climate. Seasonal environmental changes and nutrient availability naturally influence phytoplankton species composition. Since the industrial era, anthropogenic climatic influences have increased noticeably – also within the ocean. Our changing climate, however, affects the composition of phytoplankton species composition on a long-term basis and requires the organisms to adapt to this changing environment, influencing micronutrient bioavailability and other biogeochemical parameters. At the same time, phytoplankton themselves can influence the climate with their responses to environmental changes. Due to its key role, phytoplankton has been of interest in marine sciences for quite some time and there are several methodical approaches implemented in oceanographic sciences. There are ongoing attempts to improve predictions and to close gaps in the understanding of this sensitive ecological system and its responses
    • 

    corecore