242 research outputs found

    Hibridaciones interespecificas para el mejoramiento de Phaseolus vulgaris L.

    Get PDF
    A study was initiated to determine the barriers that limit the transferences of genes between Phaseolus vulgaris and P. coccineus. The factors that determine the outcome of this crossing are the direction (success is greater when P. vulgaris is used as the mother parent) and the combination of parents. Early generations show reduced viability and fertility. This reduction is more pronounced in progenies P. vulgaris x P. coccineus subspecie coccineus compared with progenies P. vulgaris x P. coccineus subspecie polyanthus. It also depends on the combination of parents. In later generations a progressive restoration of viability and fertility was observed. The combination of parents greatly affects the type of segregation of the characteristics in progeny observed in F2 of P. vulgaris x P. coccineus subspecie coccineus crossing. Moreover, results seem to indicate that in progenies P. vulgaris x P. coccineus subspecie polyanthus there are more possibilities of recombination. Interesting materials were selected for improvement of plant architecture (resistance to lodging, long hypocotyl and epicotyl, small folioles) and disease resistance (tolerance to BGMV). Some suggestions are made on future activities of the project of interspecific crosses: multiplication and evaluation of the P. coccineus collection, studies on segregation, projects on crosses fox specific objectives. (AS-CIAT

    Etapas de desarrollo en la planta de frijol

    Get PDF
    The developmental scale of the bean crop and the general characteristics of plant development are described on the basis of morphological and physiological changes in the plant. The factors influencing the duration of the developmental stages of beans are identified, namely growth habit, earliness, and climate. (CIAT)Se describen las etapas de la escala del desarrollo del cultivo de frijol y las caracteristicas generales del desarrollo de la planta con base en los cambios morfologicos y fisiologicos de la misma. Se identifican los factores que influyen en la duracion de las etapas de desarrollo del frijol: habito de crecimiento, precocidad y clima. (CIAT

    Tagging the signatures of domestication in common bean (<i>Phaseolus vulgaris</i>) by means of pooled DNA samples

    Get PDF
    Background and Aims: The main aim of this study was to use an amplified fragment length polymorphism (AFLP)-based, large-scale screening of the whole genome of Phaseolus vulgaris to determine the effects of selection on the structure of the genetic diversity in wild and domesticated populations. Methods: Using pooled DNA samples, seven each of wild and domesticated populations of P. vulgaris were studied using 2506 AFLP markers (on average, one every 250 kb). About 10 % of the markers were also analysed on individual genotypes and were used to infer allelic frequencies empirically from bulk data. In both data sets, tests were made to determine the departure from neutral expectation for each marker using an FST-based method. Key Results: The most important outcome is that a large fraction of the genome of the common bean (16 %; P &lt;0·01) appears to have been subjected to effects of selection during domestication. Markers obtained in individual genotypes were also mapped and classified according to their proximities to known genes and quantitative trait loci (QTLs) of the domestication syndrome. Most of the markers that were found to be potentially under the effects of selection were located in the proximity of previously mapped genes and QTLs related to the domestication syndrome. Conclusions: Overall, the results indicate that in P. vulgaris a large portion of the genome appears to have been subjected to the effects of selection, probably because of linkage to the loci selected during domestication. As most of the markers that are under the effects of selection are linked to known loci related to the domestication syndrome, it is concluded that population genomics approaches are very efficient in detecting QTLs. A method based on bulk DNA samples is presented that is effective in pre-screening for a large number of markers to determine selection signatures

    Exploration of the Yield Potential of Mesoamerican Wild Common Beans From Contrasting Eco-Geographic Regions by Nested Recombinant Inbred Populations

    Get PDF
    Genetic analyses and utilization of wild genetic variation for crop improvement in common bean (Phaseolus vulgaris L.) have been hampered by yield evaluation difficulties, identification of advantageous variation, and linkage drag. The lack of adaptation to cultivation conditions and the existence of highly structured populations make association mapping of diversity panels not optimal. Joint linkage mapping of nested populations avoids the later constraint, while populations crossed with a common domesticated parent allow the evaluation of wild variation within a more adapted background. Three domesticated by wild backcrossed-inbred-line populations (BC1S4) were developed using three wild accessions representing the full range of rainfall of the Mesoamerican wild bean distribution crossed to the elite drought tolerant domesticated parent SEA 5. These populations were evaluated under field conditions in three environments, two fully irrigated trials in two seasons and a simulated terminal drought in the second season. The goal was to test if these populations responded differently to drought stress and contained progenies with higher yield than SEA 5, not only under drought but also under water-watered conditions. Results revealed that the two populations derived from wild parents of the lower rainfall regions produced lines with higher yield compared to the domesticated parent in the three environments, i.e., both in the drought-stressed environment and in the well-watered treatments. Several progeny lines produced yields, which on average over the three environments were 20% higher than the SEA 5 yield. Twenty QTLs for yield were identified in 13 unique regions on eight of the 11 chromosomes of common bean. Five of these regions showed at least one wild allele that increased yield over the domesticated parent. The variation explained by these QTLs ranged from 0.6 to 5.4% of the total variation and the additive effects ranged from 164 to 277 kg ha1, with evidence suggesting allelic series for some QTLs. Our results underscore the potential of wild variation, especially from droughtstressed regions, for bean crop improvement as well the identification of regions for efficient marker-assisted introgression

    Pod indehiscence is a domestication and aridity resilience trait in common bean.

    Get PDF
    Plant domestication has strongly&nbsp;modified&nbsp;crop morphology and development. Nevertheless, many crops continue&nbsp;to display atavistic characteristics that were advantageous to their wild ancestors but are deleterious under cultivation, such as pod dehiscence (PD). Here, we provide the first comprehensive assessment of the inheritance of PD in the common bean (Phaseolus vulgaris), a major domesticated grain legume. Using three methods to evaluate the PD phenotype, we identified&nbsp;multiple, unlinked genetic regions controlling PD in a biparental population and two diversity panels. Subsequently, we assessed patterns of orthology among these loci and those controlling the trait in other species. Our results show that different genes were selected in each domestication and ecogeographic race. A chromosome Pv03 dirigent-like gene, involved in lignin biosynthesis, showed&nbsp;a base-pair substitution that is associated with decreased PD. This haplotype may underlie the expansion of Mesoamerican domesticates into northern Mexico, where arid conditions promote PD. The rise in frequency of the decreased-PD haplotype may be a consequence of the markedly different fitness landscape imposed by domestication. Environmental dependency&nbsp;and&nbsp;genetic redundancy can explain the maintenance of atavistic traits under domestication

    Dispersal of transgenes through maize seed systems in Mexico.

    Get PDF
    ObjectivesCurrent models of transgene dispersal focus on gene flow via pollen while neglecting seed, a vital vehicle for gene flow in centers of crop origin and diversity. We analyze the dispersal of maize transgenes via seeds in Mexico, the crop's cradle.MethodsWe use immunoassays (ELISA) to screen for the activity of recombinant proteins in a nationwide sample of farmer seed stocks. We estimate critical parameters of seed population dynamics using household survey data and combine these estimates with analytical results to examine presumed sources and mechanisms of dispersal.ResultsRecombinant proteins Cry1Ab/Ac and CP4/EPSPS were found in 3.1% and 1.8% of samples, respectively. They are most abundant in southeast Mexico but also present in the west-central region. Diffusion of seed and grain imported from the United States might explain the frequency and distribution of transgenes in west-central Mexico but not in the southeast.ConclusionsUnderstanding the potential for transgene survival and dispersal should help design methods to regulate the diffusion of germplasm into local seed stocks. Further research is needed on the interactions between formal and informal seed systems and grain markets in centers of crop origin and diversification

    Microsatellite diversity and genetic structure among common bean (Phaseolus vulgaris L.) landraces in Brazil, a secondary center of diversity

    Get PDF
    Brazil is the largest producer and consumer of common bean (Phaseolus vulgaris L.), which is the most important source of human dietary protein in that country. This study assessed the genetic diversity and the structure of a sample of 279 geo-referenced common bean landraces from Brazil, using molecular markers. Sixty-seven microsatellite markers spread over the 11 linkage groups of the common bean genome, as well as Phaseolin, PvTFL1y, APA and four SCAR markers were used. As expected, the sample showed lower genetic diversity compared to the diversity in the primary center of diversification. Andean and Mesoamerican gene pools were both present but the latter gene pool was four times more frequent than the former. The two gene pools could be clearly distinguished; limited admixture was observed between these groups. The Mesoamerican group consisted of two sub-populations, with a high level of admixture between them leading to a large proportion of stabilized hybrids not observed in the centers of domestication. Thus, Brazil can be considered a secondary center of diversification of common bean. A high degree of genome-wide multilocus associations even among unlinked loci was observed, confirming the high level of structure in the sample and suggesting that association mapping should be conducted in separate Andean and Mesoamerican Brazilian samples
    corecore