3,194 research outputs found

    Statistical Learning in Wasserstein Space

    Get PDF
    We seek a generalization of regression and principle component analysis (PCA) in a metric space where data points are distributions metrized by the Wasserstein metric. We recast these analyses as multimarginal optimal transport problems. The particular formulation allows efficient computation, ensures existence of optimal solutions, and admits a probabilistic interpretation over the space of paths (line segments). Application of the theory to the interpolation of empirical distributions, images, power spectra, as well as assessing uncertainty in experimental designs, is envisioned

    Escape through a time-dependent hole in the doubling map

    Full text link
    We investigate the escape dynamics of the doubling map with a time-periodic hole. We use Ulam's method to calculate the escape rate as a function of the control parameters. We consider two cases, oscillating or breathing holes, where the sides of the hole are moving in or out of phase respectively. We find out that the escape rate is well described by the overlap of the hole with its images, for holes centred at periodic orbits.Comment: 9 pages, 7 figures. To appear in Physical Review E in 201

    An Engineered Protease that Cleaves Specifically after Sulfated Tyrosine

    Get PDF
    The bacterial protease OmpT has been engineered to cleave after sulfotyrosine residues in peptide substrates but not after phosphotyrosine (see scheme). A selection/counterselection screen was used to identify OmpT variants with the desired specificity and high levels of overall catalytic activity

    Impact of boundaries on fully connected random geometric networks

    Full text link
    Many complex networks exhibit a percolation transition involving a macroscopic connected component, with universal features largely independent of the microscopic model and the macroscopic domain geometry. In contrast, we show that the transition to full connectivity is strongly influenced by details of the boundary, but observe an alternative form of universality. Our approach correctly distinguishes connectivity properties of networks in domains with equal bulk contributions. It also facilitates system design to promote or avoid full connectivity for diverse geometries in arbitrary dimension.Comment: 6 pages, 3 figure

    Six-Quark Amplitudes from Fermionic MHV Vertices

    Full text link
    The fermionic extension of the CSW approach to perturbative gauge theory coupled with fermions is used to compute the six-quark QCD amplitudes. We find complete agreement with the results obtained by using the usual Feynman rules.Comment: Latex file, 16 pages, 4 figure

    The role of perceived source location in auditory stream segregation: separation affects sound organization, common fate does not

    Get PDF
    The human auditory system is capable of grouping sounds originating from different sound sources into coherent auditory streams, a process termed auditory stream segregation. Several cues can inïŹ‚uence auditory stream segregation, but the full set of cues and the way in which they are integrated is still unknown. In the current study, we tested whether auditory motion can serve as a cue for segregating sequences of tones. Our hypothesis was that, following the principle of common fate, sounds emitted by sources moving together in space along similar trajectories will be more likely to be grouped into a single auditory stream, while sounds emitted by independently moving sources will more often be heard as two streams. Stimuli were derived from sound recordings in which the sound source motion was induced by walking humans. Although the results showed a clear effect of spatial separation, auditory motion had a negligible inïŹ‚uence on stream segregation. Hence, auditory motion may not be used as a primitive cue in auditory stream segregation
    • 

    corecore