37 research outputs found
Genetic Structure of the Rice Blast Pathogen (Magnaporthe oryzae) over a Decade in North Central California Rice Fields.
Rice blast, caused by the ascomycete Magnaporthe oryzae, is one of the most destructive rice diseases worldwide. Even though the disease has been present in California since 1996, there is no data for the pathogen population biology in the state. Using amplified fragment length polymorphisms and mating-type markers, the M. oryzae population diversity was investigated using isolates collected when the disease was first established in California and isolates collected a decade later. While in the 1990 samples, a single multilocus genotype (MLG) was identified (MLG1), over a decade later, we found 14 additional MLGs in the 2000 isolates. Some of these MLGs were found to infect the only rice blast-resistant cultivar (M-208) available for commercial production in California. The same samples also had a significant decrease of MLG1. MLG1 was found infecting the resistant rice cultivar M-208 on one occasion whereas MLG7 was the most common genotype infecting the M-208. MLG7 was identified in the 2000 samples, and it was not present in the M. oryzae population a decade earlier. Our results demonstrate a significant increase in genotypic diversity over time with no evidence of sexual reproduction and suggest a recent introduction of new virulent race(s) of the pathogen. In addition, our data could provide information regarding the durability of the Pi-z resistance gene of the M-208. This information will be critical to plant breeders in developing strategies for deployment of other rice blast resistance genes/cultivars in the future
Characterization of viruses associated with garlic plants propagated from different reproductive tissues from Italy and other geographic regions
Garlic is an important crop cultivated worldwide and several different viruses have been associated with propagative material. Garlic is propagated from bulbs and/or from vegetative topsets of the inflorescences known as bulbils. The effects of the geographic origin and the type of the propagative material on the phylogenetic relationships and genetic variability of the coat protein genes of four allium viruses are presented here. Onion yellow dwarf virus (OYDV), Leek yellow stripe virus (LYSV), Garlic virus X (GVX), and Garlic common latent virus (GCLV) were detected in single and mixed infections in plants grown either from bulbils and/or bulbs originating from Italy, China, Argentina, and the U.S.A. OYDV and LYSV fell into five and three well supported clades respectively whereas isolates of GVX and GCLV all clustered into one well-supported clade each. Some of the OYDV and LYSV clades presented evidence of host tissue selection while some phylogenetic structuring based on the geographic origin or host was also observed for some virus clades. Unique haplotypes and novel coat protein amino acid sequence patterns were identified for all viruses. An OYDV coat protein amino acid signature unique to Chenopodium quinoa, an uncommon host of the virus, was of particular interest. The type of propagative material affected the population dynamics of all of the viruses. The virus populations in plants propagated from bulbs were more diverse than in plants propagated from bulbils
Further investigation on citrus phantom disorders of unconfirmed viral etiology
This brief report expands upon the original review article published in Journal of Citrus Pathology in 2023 on citrus “phantom” disorders of presumed virus and virus-like etiology and addresses five additional disorders: citrus seed-borne virus disorder in New Zealand, bergamot vein yellowing in Greece, bergamot gummosis in Italy, bud knot in Italy, and a disorder resembling citrus crinkly leaf in Cuba. Each disorder is characterized by distinct symptoms and transmission patterns yet remains unresolved in terms of causative agents or conditions. By providing comprehensive information on these phantom citrus disorders, this report aims to serve as an additional reference for the citrus research community, industry stakeholders, and regulatory offices
A Pathogen Secreted Protein as a Detection Marker for Citrus Huanglongbing.
The citrus industry is facing an unprecedented crisis due to Huanglongbing (HLB, aka citrus greening disease), a bacterial disease associated with the pathogen Candidatus Liberibacter asiaticus (CLas) that affects all commercial varieties. Transmitted by the Asian citrus psyllid (ACP), CLas colonizes citrus phloem, leading to reduced yield and fruit quality, and eventually tree decline and death. Since adequate curative measures are not available, a key step in HLB management is to restrict the spread of the disease by identifying infected trees and removing them in a timely manner. However, uneven distribution of CLas cells in infected trees and the long latency for disease symptom development makes sampling of trees for CLas detection challenging. Here, we report that a CLas secreted protein can be used as a biomarker for detecting HLB infected citrus. Proteins secreted from CLas cells can presumably move along the phloem, beyond the site of ACP inoculation and CLas colonized plant cells, thereby increasing the chance of detecting infected trees. We generated a polyclonal antibody that effectively binds to the secreted protein and developed serological assays that can successfully detect CLas infection. This work demonstrates that antibody-based diagnosis using a CLas secreted protein as the detection marker for infected trees offers a high-throughput and economic approach that complements the approved quantitative polymerase chain reaction-based methods to enhance HLB management programs
ICTV Virus Taxonomy Profile: Pospiviroidae
[EN] Members of the family Pospiviroidae have single-stranded circular RNA genomes that adopt a rod-like or a quasi-rod-like conformation. These genomes contain a central conserved region that is involved in replication in the nucleus through an asymmetric RNA-RNA rolling-circle mechanism. Members of the family Pospiviroidae lack the hammerhead ribozymes that are typical of viroids classified in the family Avsunviroidae. The family Pospiviroidae includes the genera Apscaviroid, Cocadviroid, Coleviroid, Hostuviroid and Pospiviroid, with >25 species. This is a summary of the ICTV Report on the family Pospiviroidae, which is available at ictv.global/report/pospiviroidae.Production of this summary, the online chapter, and associated resources was funded by a grant from the Wellcome Trust (WT108418AIA).Di Serio, F.; Owens, RA.; Li, S.; Matousek, J.; Pallás Benet, V.; Randles, JW.; Sano, T.... (2021). ICTV Virus Taxonomy Profile: Pospiviroidae. Journal of General Virology. 102(2):1-2. https://doi.org/10.1099/jgv.0.00154312102
Recommended from our members
An In Vitro Pipeline for Screening and Selection of Citrus-Associated Microbiota with Potential Anti-"Candidatus Liberibacter asiaticus" Properties.
Huanglongbing (HLB) is a destructive citrus disease that is lethal to all commercial citrus plants, making it the most serious citrus disease and one of the most serious plant diseases. Because of the severity of HLB and the paucity of effective control measures, we structured this study to encompass the entirety of the citrus microbiome and the chemistries associated with that microbial community. We describe the spatial niche diversity of bacteria and fungi associated with citrus roots, stems, and leaves using traditional microbial culturing integrated with culture-independent methods. Using the culturable sector of the citrus microbiome, we created a microbial repository using a high-throughput bulk culturing and microbial identification pipeline. We integrated an in vitro agar diffusion inhibition bioassay into our culturing pipeline that queried the repository for antimicrobial activity against Liberibacter crescens, a culturable surrogate for the nonculturable "Candidatus Liberibacter asiaticus" bacterium associated with HLB. We identified microbes with robust inhibitory activity against L. crescens that include the fungi Cladosporium cladosporioides and Epicoccum nigrum and bacterial species of Pantoea, Bacillus, and Curtobacterium Purified bioactive natural products with anti-"Ca. Liberibacter asiaticus" activity were identified from the fungus C. cladosporioides Bioassay-guided fractionation of an organic extract of C. cladosporioides yielded the natural products cladosporols A, C, and D as the active agents against L. crescens This work serves as a foundation for unraveling the complex chemistries associated with the citrus microbiome to begin to understand the functional roles of members of the microbiome, with the long-term goal of developing anti-"Ca Liberibacter asiaticus" bioinoculants that thrive in the citrus holosystem.IMPORTANCE Globally, citrus is threatened by huanglongbing (HLB), and the lack of effective control measures is a major concern of farmers, markets, and consumers. There is compelling evidence that plant health is a function of the activities of the plant's associated microbiome. Using Liberibacter crescens, a culturable surrogate for the unculturable HLB-associated bacterium "Candidatus Liberibacter asiaticus," we tested the hypothesis that members of the citrus microbiome produce potential anti-"Ca Liberibacter asiaticus" natural products with potential anti-"Ca Liberibacter asiaticus" activity. A subset of isolates obtained from the microbiome inhibited L. crescens growth in an agar diffusion inhibition assay. Further fractionation experiments linked the inhibitory activity of the fungus Cladosporium cladosporioides to the fungus-produced natural products cladosporols A, C, and D, demonstrating dose-dependent antagonism to L. crescens
Recommended from our members
Two distinct viral suppressors of RNA silencing encoded by citrus tatter leaf virus
Two proteins of the citrus tatter leaf virus (CTLV), a strain of the apple stem grooving virus (ASGV), capable of inducing citrus bud union disorders on commercially important trifoliate and citrange rootstocks, were identified as viral suppressors of RNA silencing (VSR). Both the coat protein (CP) and the movement protein (MP) suppressed RNA silencing in GFP-transgenic Nicotiana benthamiana 16c plants in agrobacterium-mediated co-infiltration assays; the MP acted as a local VSR, while the CP acted as a systemic VSR. When the potato virus X (PVX) infectious vector harbored either the CTLV CP or MP gene, viral infection and symptom development were promoted in N. benthamiana. Deletions of amino acids in the CP sequence or the MP sequence resulted in failure to promote PVX infections as well as suppression of silencing in agrobacterium-mediated co-infiltration assays. Mass spectrometry-based immunoprecipitation proteomics showed that neither the CTLV CP nor the MP interacts with cellular components directly involved in host antiviral RNA silencing pathways. RNA immunoprecipitation (RIP) and RNA-protein pull-down assays indicated that the CTLV MP interacts with double-stranded RNA (dsRNA) presumably through a protein complex or proteins containing RNA binding domains. It is possible that the MP prevents dsRNA cleavage through this mechanism, leading to suppression of host antiviral RNA silencing. These findings confirmed that CTLV uses VSRs as part of its overall strategy to overcome host antiviral defenses and are indicative of the ability of ASGV and CTLV to infect a wide range of hosts including different species of woody and herbaceous plants
Enhancing soil health and nutrient availability for Carrizo citrange (X Citroncirus sp.) through bokashi and biochar amendments: An exploration into indoor sustainable soil ecosystem management
13 Pág.This study investigated the efficacy of organic soil amendments: bokashi (Bok), biochar (BC), and their combination (Bok_BC) in promoting soil health, nutrient availability, and growth of Carrizo citrange (X Citroncirus sp. Rutaceae, Parentage Citrus sinensis x Poncirus trifoliata) under indoor greenhouse settings. Results indicate significant alterations in soil parameters like total carbon (C), total nitrogen (N), and C:N ratio due to Bok, BC, and Bok_BC treatments. BC treatments boosted total C, while Bok increased total N, compared to controls. A noteworthy 25 % average decrease in C:N ratio was observed with Bok and Bok_BC, nearing the optimal 24:1 C:N for microbial growth. This highlights the potential of waste by-products in balancing nutrient release to benefit soil health and plant development. Analysis of nitrite (NO2-), nitrate (NO3-), and ammonium (NH4-N) levels revealed a dynamic relationship between soil treatments and time. Bok and Bok_BC amendments combined with both fertilizer doses [700 and 1400 Electrical Conductivity, EC] showed an initial NH4-N spike (averaging 1513 and 1288 μg N/g dry, respectively), outperforming control soils (average 503 μg N/g dry). Other key elements like phosphorus, potassium, calcium, and chlorine also experienced initial surges in Bok and Bok_BC soils before declining, suggesting a gradual nutrient release. The concentration of potentially toxic elements remained mostly stable or inconclusive, warranting further exploration. Bok, BC, and Bok_BC treatments considerably influenced germination rate and plant growth. The germination rate averaged 24.2 %, 23 %, and 22.5 % for Bok, BC, and Bok_BC, compared to the 15.9 % control. Plant height increased with Bok, BC, and Bok_BC to 18.4 cm, 18.7 cm, and 16.4 cm, respectively, from the 14.8 cm control. The results remained consistent across fertilizer doses, emphasizing the soil amendments' role in bolstering soil and plant health. In summary, the research underscores the potential of carbon-based amendments like bokashi and biochar in enhancing soil health, reducing reliance on synthetic fertilizers, and fostering sustainable soil ecosystems. The insights are pivotal for advancing sustainable agriculture in indoor greenhouse settings for nursery plant production.This work was supported by the California Department of Food and Agriculture (CDFA) Specialty Crop Block Grant Program (SCBGP) [20-0001-032-SF]; and the California Citrus Nursery Board (CCNB).Peer reviewe
Nucleotide sequence and genome organization of Dweet mottle virus and its relationship to members of the family Betaflexiviridae
The nucleotide sequence of Dweet mottle virus (DMV) was determined and compared to sequences of members of the families Alphaflexiviridae and Betaflexiviridae. The DMV genome has 8,747 nucleotides (nt) excluding the 3′ poly-(A) tail. DMV genomic RNA contains three putative open reading frames (ORFs) and untranslated regions of 73 nt at the 5′ and 541 nt at 3′ termini. ORF1 potentially encoding a 227.48-kDa polyprotein, which has methyltransferase, oxygenase, endopeptidase, helicase, and RNA-dependent RNA polymerase (RdRP) domains. ORF2 encodes a movement protein of 40.25 kDa, while ORF3 encodes a coat protein of 40.69 kDa. Protein database searches showed 98–99% matches of DMV ORFs with citrus leaf blotch virus (CLBV) sequences. Phylogenetic analysis based on the RdRP core domain revealed that DMV is closely related to CLBV as a member of the genus Citrivirus. DMV did not satisfy the molecular criteria for demarcation of an independent species within the genus Citrivirus, family Betaflexiviridae, and hence, DMV can be considered a CLBV isolate