1,039 research outputs found
Robust IR Remote Sensing Technique of the Total Column of Trace Gases Including Carbon Dioxide and Methane
Progress on the development of a differential radiometer based upon the Fabry-Perot interferometer (FPI) for methane (CH4) and carbon dioxide (C02) detection in the atmosphere is presented. Methane measurements are becoming increasingly important as a component of NASA's programs to understand the global carbon cycle and quantifY the threat of global warming. Methane is the third most important greenhouse gas in the Earth's radiation budget (after water vapor and carbon dioxide) and the second most important anthropogenic contributor to global warming. The importance of global warming and air quality to society caused the National Research Council to recommend that NASA develop the following missions [1]: ASCENDS (Active Sensing of C02 Emissions over Nights, Days, and Seasons), GEOCAPE (Geostationary Coastal and Air Pollution Events), and GACM (Global Atmosphere Composition Mission). Though methane measurements are not specifically called out in these missions, ongoing environmental changes have raised the importance of understanding the methane budget. In the decadal survey is stated that "to close the carbon budget, we would also address methane, but the required technology is not obvious at this time. If appropriate and cost-effective methane technology becomes available, we strongly recommend adding a methane capability". In its 2007 report the International Panel on Climate Change identified methane as a key uncertainty in our understanding saying that the causes of recent changes in the growth rate of atmospheric CH4 are not well understood. What we do know is that methane arises from a number of natural sources including wet lands and the oceans plus man made sources from agriculture, as well as coal and petroleum production and distribution. It has recently been pointed out that large amount of methane are frozen in the permafrost of Canada and Siberia. There is a fear that melting of this permafrost driven by global warming may release large amounts of methane very suddenly further exacerbating climate change [2]. Last year our group began a joint effort with Johns Hopkins Applied Physics Laboratory to investigate the possibility of developing a small unmanned aerial vehicle (UAV) equipped to measure greenhouse gases-particularly methane. Although we are targeting our system for smaller UAV's the instrument will be directly applicable to missions involving larger NASA UAV's such as Global Hawk or even on missions utilizing manned aircraft. Because of its small size, inherent ruggedness and simplicity some version of our proposed instrument may find a role as a satellite instrument for NASA or NOAA
A New Remote Sensing Filter Radiometer Employing a Fabry-Perot Etalon and a CCD Camera for Column Measurements of Methane in the Earth Atmosphere
A portable remote sensing system for precision column measurements of methane has been developed, built and tested at NASA GSFC. The sensor covers the spectral range from 1.636 micrometers to 1.646 micrometers, employs an air-gapped Fabry-Perot filter and a CCD camera and has a potential to operate from a variety of platforms. The detector is an XS-1.7-320 camera unit from Xenics Infrared solutions which combines an uncooled InGaAs detector array working up to 1.7 micrometers. Custom software was developed in addition to the graphical user basic interface X-Control provided by the company to help save and process the data. The technique and setup can be used to measure other trace gases in the atmosphere with minimal changes of the etalon and the prefilter. In this paper we describe the calibration of the system using several different approaches
A Broad Bank Lidar for Precise Atmospheric CO2 Column Absorption Measurement from Space
Accurate global measurement of carbon dioxide column with the aim of discovering and quantifying unknown sources and sinks has been a high priority for the last decade. In order to uncover the "missing sink" that is responsible for the large discrepancies in the budget the critical precision for a measurement from space needs to be on the order of 1 ppm. To better understand the CO2 budget and to evaluate its impact on global warming the National Research Council (NRC) in its recent decadal survey report (NACP) to NASA recommended a laser based total CO2 mapping mission in the near future. That's the goal of Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission - to significantly enhance the understanding of the role of CO2 in the global carbon cycle. Our current goal is to develop an ultra precise, inexpensive new lidar system for column measurements of CO2 changes in the lower atmosphere that uses a Fabry-Perot interferometer based system as the detector portion of the instrument and replaces the narrow band laser commonly used in lidars with a high power broadband source. This approach reduces the number of individual lasers used in the system and considerably reduces the risk of failure. It also tremendously reduces the requirement for wavelength stability in the source putting this responsibility instead on the Fabry- Perot subsystem
Isospin symmetry breaking in an algebraic pairing Sp(4) model
An exactly solvable sp(4) algebraic approach extends beyond the traditional
isospin conserving nuclear interaction to bring forward effects of isospin
symmetry breaking and isospin mixing resulting from a two-body nuclear
interaction that includes proton-neutron (pn) and like-particle isovector
pairing correlations plus significant isoscalar pn interactions. The model
yields an estimate for the extent to which isobaric analog 0+ states in light
and medium mass nuclei may mix with one another and reveals possible, but still
extremely weak, non-analog beta-decay transitions.Comment: 8 pages, 2 figure
Differential Radiometers Using Fabry-Perot Interferometric Technique for Remote Sensing Determination of Various Atmospheric Trace Gases
New type of remote sensing instrument based upon the Fabry-Perot inte rferometric technique has been developed at NASA's Goddard Space Flight Center. Fabry-Perot interferometry (FPI) is a well known, powerful spectroscopic technique and one of its many applications is to be use d to measure greenhouse gases and also some harmful species in the at mosphere. With this technique, absorption of particular species is me asured and related to its concentration. A solid Fabry-Perot etalon is used as a frequency filter to restrict the measurement to particular absorption bands of the gas of interest. With adjusting the thicknes s of the etalon that separation (in frequency) of the transmitted fri nges can be made equal to the almost constant separation of the gas a bsorption lines. By adjusting the temperature of the etalon, which changes the index of refi-action of its material, the transmission fring es can be brought into nearly exact correspondence with absorption li nes of the particular species. With this alignment between absorption lines and fringes, changes in the amount of a species in the atmosph ere strongly affect the amount of light transmitted by the etalon and can be related to gas concentration. The instrument that we have dev eloped detects the absorption of various atmospheric trace gases in d irect or reflected sunlight. Our instrument employing Fabry-Perot interferometer makes use of two features to achieve high sensitivity. The first is high spectral resolution enabling one to match the width of an atmospheric absorption feature by the instrumental band pass. The second is high optical throughput enabled by using multiple spectral lines simultaneously. For any species that one wishes to measure, thi s first feature is available while the use of multiple spectral features can be employed only for species with suitable spectra and freedom from interfering species in the same wavelength region. We have deve loped an instrument for use as ground based, airborne and satellite s ensor for gases such as carbon dioxide (1570 nm), oxygen (762 nm and 768 nm lines sensitive to changes in oxygen pressure and oxygen temper ature) and water vapor (940 nm). Our current goal is to develop an ul tra precise, inexpensive, ground based device suitable for wide deplo yment as a validation instrument for the Orbiting Carbon Observatory (OCO) satellite. We show sensitivity measurements for CO2, 02, and H2 O, compare our measurements to those obtained using other types of sensors and discuss some of the peculiarities that must be addressed in order to provide the very high quality column detection required for solving problems about global distribution of greenhouse gases and cl imatological models. In another area of research we are interested in developing a small-size channel for CO2 capable of doing simultaneous measurements with the AERONET (Aerosol Robotic Network) at NASA, God dard to study the hypothesis that atmospheric aerosols affect the reg ional terrestrial carbon cycle. We present recent data from our groun d based measurements of O2, CO2, H2O and (13)CO2 and discuss extensio n of the technique to new species and applications
Electron effective mass in AlGaN alloys determined by mid-infrared optical Hall effect
The effective electron mass parameter in Si-doped AlGaN is
determined to be from mid-infrared optical Hall
effect measurements. No significant anisotropy of the effective electron mass
parameter is found supporting theoretical predictions. Assuming a linear change
of the effective electron mass with the Al content in AlGaN alloys and
for GaN, an average effective electron mass of
can be extrapolated for AlN. The analysis of mid-infrared
spectroscopic ellipsometry measurements further confirms the two phonon mode
behavior of the E(TO) and one phonon mode behavior of the A(LO) phonon
mode in high-Al-content AlGaN alloys as seen in previous Raman scattering
studies
Miniaturized Hollow-Waveguide Gas Correlation Radiometer (GCR) for Trace Gas Detection in the Martian Atmosphere
Gas correlation radiometry (GCR) has been shown to be a sensitive and versatile method for detecting trace gases in Earth's atmosphere. Here, we present a miniaturized and simplified version of this instrument capable of mapping multiple trace gases and identifying active regions on the Mars surface. Reduction of the size and mass of the GCR instrument has been achieved by implementing a lightweight, 1 mm inner diameter hollow-core optical fiber (hollow waveguide) for the gas correlation cell. Based on a comparison with an Earth orbiting CO2 gas correlation instrument, replacement of the 10 meter mUltipass cell with hollow waveguide of equivalent pathlength reduces the cell mass from approx 150 kg to approx 0.5 kg, and reduces the volume from 1.9 m x 1.3 m x 0.86 m to a small bundle of fiber coils approximately I meter in diameter by 0.05 m in height (mass and volume reductions of >99%). This modular instrument technique can be expanded to include measurements of additional species of interest including nitrous oxide (N2O), hydrogen sulfide (H2S), methanol (CH3OH), and sulfur dioxide (SO2), as well as carbon dioxide (CO2) for a simultaneous measure of mass balance
q-Analogue of
A natural embedding for the
corresponding quantum algebras is constructed through the appropriate
comultiplication on the generators of each of the and
algebras. The above embedding is proved in their -boson realization by means
of the isomorphism between the (mn)(m)(n) algebras.Comment: 11 pages, no figures. In memory of professor R. P. Rousse
- …