1,540 research outputs found
Join-Reachability Problems in Directed Graphs
For a given collection G of directed graphs we define the join-reachability
graph of G, denoted by J(G), as the directed graph that, for any pair of
vertices a and b, contains a path from a to b if and only if such a path exists
in all graphs of G. Our goal is to compute an efficient representation of J(G).
In particular, we consider two versions of this problem. In the explicit
version we wish to construct the smallest join-reachability graph for G. In the
implicit version we wish to build an efficient data structure (in terms of
space and query time) such that we can report fast the set of vertices that
reach a query vertex in all graphs of G. This problem is related to the
well-studied reachability problem and is motivated by emerging applications of
graph-structured databases and graph algorithms. We consider the construction
of join-reachability structures for two graphs and develop techniques that can
be applied to both the explicit and the implicit problem. First we present
optimal and near-optimal structures for paths and trees. Then, based on these
results, we provide efficient structures for planar graphs and general directed
graphs
Mobile consultant: Combining total mobility with constant access
Minimizing the time required for a medical consultant to offer his/her expert opinion, can be viewed as a life-saving procedure. We have designed and tested an integrated system that will allow a medical consultant to freely move either within, or outside the hospital, while still maintaining constant contact with the patients via videoconferencing and high-resolution imaging. The above system is explained in this paper, along with its advantages and its potential limitations. Conclusively, we demonstrate that such a system further increases the mobility of the medical consultant, while improving the healthcare service
Mobile consultant: Evaluation of additional services
As the need for mobility in the medical world increases, newer systems and applications came to light; many of them based on wireless and mobile networks. PDA based systems were presented in the past, capable of videoconferencing and transmitting high quality images between a roaming consultant and a fixed point in the hospital. These systems not only had desirable characteristics but also incorporated additional services that were found of value: paging, Voice over IP calling, Internet, email, intranet, patient record update, etc. This paper presents an engineering and clinical evaluation of those additional services based on both objective and subjective criteria. It concludes that such complementary services can be desirable as they increase personnel mobility, utilize the hospital resources more efficiently while at the same time increase productivity and decrease the cost of hardware and communications
Mobile consultant: Combining total mobility with constant access
Minimizing the time required for a medical consultant to offer his/her expert opinion, can be viewed as a life-saving procedure. We have designed and tested an integrated system that will allow a medical consultant to freely move either within, or outside the hospital, while still maintaining constant contact with the patients via videoconferencing and high-resolution imaging. The above system is explained in this paper, along with its advantages and its potential limitations. Conclusively, we demonstrate that such a system further increases the mobility of the medical consultant, while improving the healthcare service
PDA-based system for monitoring electromagnetic signals
The development of a mobile system for receiving, storing, and displaying electromagnetic-signals (EM) at specific frequencies using mobile devices and wireless networks, is of extreme interest, especially when the final means of display is a PDA, a very light and compact handheld device. In the present study, an application is developed for remote monitoring of EM-signals preceding seismic events. The particular advantages and challenges faced when developing such application are explained and future work in this area is presented
Using handheld devices for real-time wireless teleconsultation
Recent advances in the hardware of handheld devices, opened up the way for newer applications in the healthcare sector, and more specifically, in the teleconsultation field. Out of these devices, this paper focuses on the services that personal digital assistants and smartphones can provide to improve the speed, quality and ease of delivering a medical opinion from a distance and laying the ground for an all-wireless hospital. In that manner, PDAs were used to wirelessly support the viewing of digital imaging and communication in medicine (DICOM) images and to allow for mobile videoconferencing while within the hospital. Smartphones were also used to carry still images, multiframes and live video outside the hospital. Both of these applications aimed at increasing the mobility of the consultant while improving the healthcare service
Impaired hemodynamics and neural activation? A fMRI study of major cerebral artery stenosis
Functional MRI motor mapping was performed in two women with unilateral high-grade stenosis of the middle cerebral artery (MCA) to determine the influence of impaired hemodynamics on the blood oxygenation level dependent (BOLD) response. In both patients no structural lesions were present in primary motor pathways. A redistribution of the motor network to the healthy hemisphere was the main indicator of chronic hemodynamic compromise
A smartphone-based Teleradiology system
The development of a teleradiology application for remote monitoring and processing of patient image data using 2nd generation mobile devices with enhanced network services, is of extreme interest, especially when the final means of display is a smartphone, a very light and compact handheld device. In the following paper the development of applications, that are responsible for remote monitoring and processing of medical images, is investigated
Linear Growth through 12 Years is Weakly but Consistently Associated with Language and Math Achievement Scores at Age 12 Years in 4 Low- or Middle-Income Countries.
BackgroundWhether linear growth through age 12 y is associated with language and math achievement at age 12 y remains unclear.ObjectiveOur objective was to investigate associations of linear growth through age 12 y with reading skill, receptive vocabulary, and mathematics performance at age 12 y in 4 low- or middle-income countries (LMICs).MethodsWe analyzed data from the Young Lives Younger Cohort study in Ethiopia (n = 1275), India (n = 1350), Peru (n = 1402), and Vietnam (n = 1594). Age 1, 5, 8, and 12 y height-for-age z scores (HAZ) were calculated. Language and math achievement at age 12 y was assessed with the use of country-specific adaptations of the Peabody Picture Vocabulary Test, the Early Grades Reading Assessment, and a mathematics test; all test scores were standardized by age within country. We used path analysis to examine associations of HAZ with achievement scores. Twelve models were examined at each age (3 tests across 4 countries).ResultsMean HAZ in each country was <-1.00 at all ages. Overall, linear growth through age 12 y was associated with 0.4-3.4% of the variance in achievement scores. HAZ at 1 y was positively and significantly associated with the test score in 11 of the 12 models. This association was significantly mediated through HAZ at 5, 8, and 12 y in 9 of the models. HAZ at 5, 8, and 12 y was positively and significantly associated with test scores in 8, 8, and 6 models, respectively. These associations were mediated through HAZ at older ages in 6 of the HAZ at 5-y models and in 6 of the HAZ at 8-y models.ConclusionChild relative linear growth between ages 1 and 12 y was weakly but consistently associated with language and math achievement at age 12 y in 4 LMICs
- …