3,004 research outputs found

    Magnetic Collapse and the Behavior of Transition Metal Oxides at High Pressure

    Full text link
    We report a detail theoretical study of the electronic structure and phase stability of transition metal oxides MnO, FeO, CoO, and NiO in their paramagnetic cubic B1 structure by employing dynamical mean-field theory of correlated electrons combined with \emph{ab initio} band structure methods (DFT+DMFT). Our calculations reveal that under pressure these materials exhibit a Mott insulator-metal transition (IMT) which is accompanied by a simultaneous collapse of local magnetic moments and lattice volume, implying a complex interplay between chemical bonding and electronic correlations. Moreover, our results for the transition pressure show a monotonous decrease from ~ 145 GPa to 40 GPa, upon moving from MnO to CoO. In contrast to that, in NiO, magnetic collapse is found to occur at remarkably higher pressure of ~ 429 GPa. We provide a unified picture of such a behavior and suggest that it is primary a localized to itinerant moment behavior transition at the IMT that gives rise to magnetic collapse in transition metal oxides.Comment: 6 pages, 3 figure

    Slave-rotor mean field theories of strongly correlated systems and the Mott transition in finite dimensions

    Full text link
    The multiorbital Hubbard model is expressed in terms of quantum phase variables (``slave rotors'') conjugate to the local charge, and of auxiliary fermions, providing an economical representation of the Hilbert space of strongly correlated systems. When the phase variables are treated in a local mean-field manner, similar results to the dynamical mean-field theory are obtained, namely a Brinkman-Rice transition at commensurate fillings together with a ``preformed'' Mott gap in the single-particle density of states. The slave- rotor formalism allows to go beyond the local description and take into account spatial correlations, following an analogy to the superfluid-insulator transition of bosonic systems. We find that the divergence of the effective mass at the metal- insulator transition is suppressed by short range magnetic correlations in finite-dimensional systems. Furthermore, the strict separation of energy scales between the Fermi- liquid coherence scale and the Mott gap found in the local picture, holds only approximately in finite dimensions, due to the existence of low-energy collective modes related to zero-sound.Comment: 16 pages, 12 figure

    Competing superfluid and density-wave ground-states of fermionic mixtures with mass imbalance in optical lattices

    Full text link
    We study the effect of mass imbalance on the phase diagram of a two-component fermionic mixture with attractive interactions in optical lattices. Using static and dynamical mean-field theories, we show that the pure superfluid phase is stable for all couplings when the mass imbalance is smaller than a limiting value. For larger imbalance, phase separation between a superfluid and a charge-density wave takes place when the coupling exceeds a critical strength. The harmonic trap induces a spatial segregation of the two phases, with a rapid variation of the density at the boundary.Comment: e.g.:4 pages, 3 figure

    How Rotation Affects Masses and Ages of Classical Cepheids

    Full text link
    Classical Cepheid variable stars are both sensitive astrophysical laboratories and accurate cosmic distance tracers. We have recently investigated how the evolutionary effects of rotation impact the properties of these important stars and here provide an accessible overview of some key elements as well as two important consequences. Firstly, rotation resolves the long-standing Cepheid mass discrepancy problem. Second, rotation increases main sequence lifetimes, i.e, Cepheids are approximately twice as old as previously thought. Finally, we highlight the importance of the short-period ends of Cepheid period distributions as indicators for model adequacy.Comment: 5 pages, 4 figures, proceedings of the 22nd Los Alamos Stellar Pulsation Conference "Wide-field variability surveys: a 21st-century perspective" held in San Pedro de Atacama, Chile, Nov. 28 - Dec. 2, 201

    Dynamical singlets and correlation-assisted Peierls transition in VO2

    Full text link
    A theory of the metal-insulator transition in vanadium dioxide from the high-temperature rutile to the low- temperature monoclinic phase is proposed on the basis of cluster dynamical mean field theory, in conjunction with the density functional scheme. The interplay of strong electronic Coulomb interactions and structural distortions, in particular the dimerization of vanadium atoms in the low temperature phase, plays a crucial role. We find that VO2 is not a conventional Mott insulator, but that the formation of dynamical V-V singlet pairs due to strong Coulomb correlations is necessary to trigger the opening of a Peierls gap.Comment: 5 page

    Rotationally-invariant slave-boson formalism and momentum dependence of the quasiparticle weight

    Full text link
    We generalize the rotationally-invariant formulation of the slave-boson formalism to multiorbital models, with arbitrary interactions, crystal fields, and multiplet structure. This allows for the study of multiplet effects on the nature of low-energy quasiparticles. Non-diagonal components of the matrix of quasiparticle weights can be calculated within this framework. When combined with cluster extensions of dynamical mean-field theory, this method allows us to address the effects of spatial correlations, such as the generation of the superexchange and the momentum dependence of the quasiparticle weight. We illustrate the method on a two-band Hubbard model, a Hubbard model made of two coupled layers, and a two-dimensional single-band Hubbard model (within a two-site cellular dynamical mean-field approximation).Comment: added figures, improved discussio

    Mott transition and suppression of orbital fluctuations in orthorhombic 3d1d^{1} perovskites

    Get PDF
    Using t2gt_{2g} Wannier-functions, a low-energy Hamiltonian is derived for orthorhombic 3d13d^{1} transition-metal oxides. Electronic correlations are treated with a new implementation of dynamical mean-field theory for non-cubic systems. Good agreement with photoemission data is obtained. The interplay of correlation effects and cation covalency (GdFeO3_{3}-type distortions) is found to suppress orbital fluctuations in LaTiO3,_{3}, and even more in YTiO3_{3}, and to favor the transition to the insulating state.Comment: 4 pages, 3 figures; revised manuscrip
    • …
    corecore