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1. INTRODUCTION

Conventional Alvarez proton linacs are operated at the zero-mode
cut-o0ff frequency of the § standing wave in a drift-tube loaded
circular tank, The frequenéy difference between the operating mode and
the adjacent mode is small, making the Alvarez structure rather sensitive
to individual cell tuning errors |.1) and beam-loading compensation [2] .

Great advantage could thus be gained by increasing as much as
possible the mode spacing around the operating EO 0 mode. This means
modifying the dispersion curve of the E 1 passban%, which is possible
only if this passband is coupled %o anot%er passband, the position of
which could be largely varied with respect to the E passband [3]} .
Tt should be noticed that this prineiple was discovered in 1956 by the
Harwell team [4] .

The work undertaken in the Rutherford High Energy Laboratory and
later on in CERN, on the cross-bar structure, had shown the existence
of a lower passband, of the backward wave type, due to the bar resonan-
ces., The O-mode cut-off frequency of this lower passband rises
continuously with increasing bar diaméter, whereas the & 10 cut-off
frequency o remains practically unchanged r5] . An in%eresting
situation arises when o = W : for this particular bar diameter,
the two passbands { bar énd E_ 2) cross each other at O-mode with a
finite slope, thereby producing large mode spacing near this point.

In fact, this is 3>he only case where the two dispersion curves cross
each other: if the bar diameter is further increased, the O-mode of
the lower passband stays unchanged at the frequency of the Alvaresz
field configuration, while the upper passband staris s$i11 higher in
frequency {see fig. 1). A new stopband arises, and the mode spacing
around the Alvarez operating point decreases, due now to the adjacent
mode in the lower passband. The largest mode spacing is thus obtained
when the two passbands cross at O-mode.

An important remark should be made about the field configurations
which correspond to w and w W is the frequency of an Alvares
field configuration, iJe. a loaded B type of fields As such, it
is only slightly perturbed by the bars Irrespective of their diameter,
because the bars are perpendicular to the electric field in this con-
figuration and they do not carry any net longitudinal current. On the
other hand, is the zero-mode frequency of the bar resonances,
which are assocéiated with currents flowing along the bars, all currents
being equal in amplitude and phase throughout the structure. If, as
usual, the cavity is terminated by a metallic end-plate placed in a
cell symmetry plane, the boundary conditions require that, in O-mode,
these currents be zero in all bars. The corresponding fields are there-
fore zero everywhere, making it impossible to excite this tield con-
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figuration and to directly measure o, 1in a cavity of finite length.
It is thus clear that, when o = W Q, the only field configuration
which can be excited in a prac%ical c%vity at this frequency is the
Alvarez type of field, and this conclusion has been confirmed in all
our measurements.

We have explained how, for the cross-bar structure, crossing of
the two passbands can be achieved by increasing the bar diameter to a
suitable value. In the Alvarez structures which have been built up to
now, each drift tube is supported by one stem, or eventually by two
stems at 90 . The resonances of thesge drift-tube terminated stems
constitute a second passband, similar to the cross-bar passband, but
which lies in general well below the normal E passband. It was
Giordano's idea to push this lower passband up In frequency bx in-
creasing the number of stems [EJ , thereby producing what he called
a multistem structure, On his 100 MeV proton linac model, Giordano
found that 4 flared stems were needed to get the E and the stem-
passband crossing each other at O-mode. In fact, Giordano's early
measurements [7} stimulated at CERN an attempt to produce a theory
which would give the conditions for stopband elimination in the case
of a more general stem arrangement than the cross-bar structure. This
general theory will now be presented.

2, THE CASE OF INFINITELY SHORT CELLS

a) One stem per drift tube, In order to produce the w field
configuration, we must imagine an infinitely long cavity where all bars
carry identical currents and all drift tubes are charged with identical
electric charges (see fig. 2a). In this case there is little field in
the gaps between the drift tubes, and we do not alter the frequency
very much if we fill in the gaps with metal, thus obtaining the arrange-
ment of fig. 2b where a coaxial inner conductor having the same diameter
d as the drift tubes is periodically supported by the stems. Now, if
the distance I between adjacent stems is very small compared with the
cavity diameter, the stems may be replaced by a thin partition wall
extending between the inner and outer cylinders, as in fig, 2c. Finally
we have transformed our initial structure into a uniform cylindrical
coaxial wavegulide with a partition wall representing the stems.

In order to produce the o field configuration, the currents
on both sides of the partition wgll must flow in the same direction
and this direction must be radial. Therefore, the uniform waveguide
mode which represents the o field configuration is an H mode
at cut-off, with H_ varying as cos pg (see fige 2d)., Since H_ must
change sign on both sides of the partition wall, L must be a half-
integer and the lowest mode corresponds to » = 1/2. Therefore, in
the case of one stem per drift tube and very short cells, a good
approximation to Wy is given by the frequency of the H%‘l 0 first

mode in the equivalent uniform coaxial waveguide. Let us remark in
passing that this equivalence only applies at O-mode.

The current distribution along the stems is given by the radial
variation of Hz’ i.e. by Bessel functions of order P and argument kr.
For the first "H mode, H_ has no zero between the inner and outer
cylinders, and theTefore the current keeps a constant sign along the
stems,

b) Two stems per drift tube, The two stems define two angles:
one is smaller, the other larger than = . Tet us call the latter
one., Reasoning as before, we see that for very short cells a good
approximation to w is given by the frequency of the ¥ mode in
the equivalent uniform coaxial waveguide with two partiti%%pwalls at
an angle # (see fig. 3)., Two cases are possible, according to
whether the currents in the two stems have the same (fig. 3a) or have
opposite (fig. 3b) radial signw: in the first case » §/r must be
an odd integer, in the second case it must be an even integer.

Figure 4 shows a graph of wD/2¢ for the H mode as a funcm
tion of a/D, with p as parameter. When p >0 thi&’mode is the
dominant mode (mode with the lowest cut-off frequency) in the coaxial
partitioned waveguide: it corresponds %o an azimuthal resonance, by
contrast with all the upper modes which correspond to radial resonances,
where H undergoes at least one change of sign between the inner and
outer cylinders, For WY = 0 there is no azimuthal resonance possible,
and the lower mode already corresponds to a radial resonance which is
much higher in frequency (wD/2c is at least 3.832), Disregarding
therefore the case u = 0, we see on figure 4 that wD/Zc is an ever
increasing function of L .

Since w is the cut-off frequency of the lowest passband, it
must be as low a frequency as possible. Therefore, for a given § ,
it corresponds to the lowest value of y @/n , that is p @/n = 1
(see fig, 3a). The possibility of the radial currents having opposite
signe (fig. 3b), since it corresponds to higher values of » #/n ,
needs no further consideration.
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It is thus easy to vary p and w by varying the angle ¢
between the stems, a larger angle produc?ng a lower freguency. Since
two angles are defined by the two stems, it might be expected that
two O-mode frequencies and therefore two passbands are assoclated with
stem resonances such that p #/n = 1 . So far we have not found any
experimental evidence for a higher stem-passband of this type. Therc-
fore, onlythe lowest frequency, determined by the largest angle between
stems, will be considered in what follows: this is the reason why we
take ¢ > mn. Consequently, a two-stem structure allows the range
1/2€ v ¢ 1 to be covered. The maximum value p = 1 is obtained
with two stems equally spaced at 180°,

c) Three stems per drift tube., Since only the largest angle ¢
defined by the stems is relevant, we do not change Wy by taking the

two smaller angles as equal : this gives the symmetrical arrangement
of figure 5a, It is obvious from this figure that ¢ may be varied
from 2n to 2n/3., The range oy £ } n  being already covered

with two stems per drift tube, the range > ¢ 2n/3 is typical of
a three-stem structure : it can also be achieved with the symmetrical
arrangement of figure 5b.

Therefore, a three-stem structure allows the range 1/2< V\< 3/2
to be covered. The maximum value » = 3/2 is obtained with the
stems equally spaced at 1207,

d) Four stems per drift tube. Calling always @ the largest
angle defined by the stems, we may assume that jod £ n (the larger
values of ¢ may be obtained with two stems). We do not change w
if we take the second large angle as equal to "§ , and divide the ®
remaining angle in two equal parts (n-~f) : this gives the symmetrical
arrangement of figure 6a, which may be transformed into the even more
symmetrical arrangement of figure 6b, It is clear that ¢ may be
varied from n to =x/2.

Consequently, a four-stem structure allows. the range 1/2& vy £ 2
to be covered. The gaximum value p = 2 . 1is obtained with the stems
equally spaced at 90 ,

More generally, a N-stem structure allows the range 1/2 £ v{N/2
to be covered, The maximum value p = N/2 1is obtained with equally
spaced stems.

3. THE CASE OF FINITE CELL LENGTH I.

Strictly speaking, the above results only apply to infinitely
short cells and, because ds/L < 1, alsy to infinitely thin stems.
When L 1is finite, it may be expected that, 1T thick enough, the
stems will still be equivalent to a continuous partition wall at
O~mode. In fact, the effect of stem diameter may be investigated by
considering (see fig. 2b) a stem as the inner conductor of a trans-
mission line, the outer "conductor" being constituted by the cavity
walls assumed to be at a constant distance D/2, and by two magnetic
walls at a distance L/2 (see fig, 7). The characteristic imoedanece
aof sugh a line is readily obtained as

d
1 [fo n D / s L
A= — _— —— —
2o™ 5n £, 7 T "o -'\“ T : 5 <1
This line is short-circuited at one end by the cavity wall, and
terminated at the other end by the drift tube capacitance C, which
may be approximated as C, L where C is the capacitance per unit

length of the central piPe in figure™2b, TIn case of one or two stems
per drift tube, the O-mode stem resonance is thus roughly given by
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Detailed calculations on the cross-bar and the 4~stem structures [S]
replace this equation by the more general one

£ EkD) 2}: %log (n d—;) %((l (1

where f is an ever increasing function of its argument, but different

for each stem configuration.
The general relation (1) yields two important results:
1) v, is an ever increasing function of d_ . a

2) the same w_ is obtained for % = 0 and for n—;— = 1.

This result is obviously approximate because equation (1) only holds
when T/D <K 1.

By increasing 1w dg/L from O to 1 , it is thus possible to
raise w continuously from zero (for a structure with drift-tubes) to
the limi% obtained for infinitely short cells.

Conclusion: Tor a finite cell lengih, the frequency w plotted
in figure 4 is an upper limit of w, , which can be reached only with

thick stems (such that = dg/L zﬂl)?

4, THE USE OF A SUPERPERIOD ple.

In order that the arguments of§ 2 for infinitely short cells to
be valid, it is not necessary that every drift tube is supported by

N stems, giving the structure a period 1L along the z-axis. Instead,
the structure may have a period p L (p = 1, 2, 3...) involving less

than N stems per drift-tube, under the condition that the cross-
sectional projections of all stems contained in a superperiod would

yield a N-stem pattern, like those in figures 3, 5 and 6. All these
structures have the same frequency limit o for infinitely short cells,
as plotted in figure 4 : but in order to reéach this 1imit with finite
cells, they will need stems about p times as thick (such that

n dg/pL & 1) as a N-stem structure with period I . If used with the
same stem diameter, they will have a lower than the latter ¢ in

other words, they are less efficient in raising Wy e

Nevertheless, for a given number n of stems on each drift tube,
the stem arrangement in a superperiod pL (p ) 1) yielding a N-stem
pattern (Nﬁ)n) will be more efficient than the normal n-stem pattern
with period L ., Even if both structures have the same stem diameter,
this argument still applies because the w, - upper limit strongly
increases with N (see fig. 4) although theé variation of w,_ with
dy/L is slow, happening only through (pL/D)log (n 4 /pL) as shown in
equation (1),

The extreme case would be realized with n=1, p=N: the correspond-
ing structure would have one stem per drift tube, with stems helically
arranged in a superperiod NL. Such a structure, however, has no symmetry
plane where to put the metallic end-plates closing the cavity. In order
to keep a symmetry plane in the structure, the best choice is p = 2
because it avoids repeating the same stem arrangement in one superperiod.

With p = 2 we may take n = N/2 or(W+1)/2, according to which
is an integer., Doing so, we transform the stem arrangements of figures
3a, 5b and 6b respectively into those of figures 8, 9, 10. Figure 9
and the three arrangerents of figure 10, having the same angle £ and
the same superperiod, are practically eguivalent. It should be noticed
that figure 1l0a when ﬁ = n/2 is nothing but the cross-bar structure.
Finally, figure 11 shows the most efficient structure having three stems
per drift tube.

5e CHOICE OF OPTIMUM STEM CONFIGURATION

As made clear in § 1, the optimum stem configuration and stem
diameter are such that w, = «_ . Representative oints of the
O-mode frequency of %ypical Alvares structures [9] are indicated
in figure 4, for a %roton energy range 1-200 MeV : they all fall
between the curves v = 1 and ¥ = 3/2 corresponding to N = 2
and N = 3, Since these curves represent an upper limit of w for
thick stems, it is obvious that at least a 3-stem pattern is néeded.
With a superperiod 2L, this leads to use two stems per drift tube,
with the 3-stem configuration of fig. 9 or the more symmetrical 4-stem
configurations of fig. 10, Tu what follows, we retain only the latter
ones.

For comparison, the stem configurations which have been used
so far in proton linacs are 1 stem (figure 24) or 2 stems at 90
(figure 3a). Since the corresponding » values are so low as 1/2 and
2/% , w,_ 1is always much lower than « . The stem passband is then
s0 distagt from the E passband that®its influence on the latter is
very small : with respéct to the no-stem case, the effect on mode
spacing around w is almost negligible. The same argument would
apply to multistem” configurationg, if the stems are thin enough.

Nevertheless, for 2 stems at 180 , V = 1 and with practical stem
diameters, w may come rather close to w (depending on the
energy) : thg influence of the stems on thg E dispersion curve

must then not be neglected (see later, curves 4 and 5 in figure 21).



RT losses on the stems being proportional to their diameter,
thin stems would be desirable., But for mechanical reasons, a stem
diameter of 2.5 cm at 200 MHz seems a minimum : we therefore restrict
the practical stem diameters to the range 2.5 -~ 12.5 cms Oince the
effect of d,/L on w, appears only through (pL/D)log (n ds/pL) , it
will be very small at Pow energies (1/D 1) while becoming more
pronounced at high energies.

Low energies (0.75 - 10 MeV) 0.064 < L/D £ 0.24

Due to the smallness of L/D , 1t is impractical to adjust w
by varying dg . BEven with the smallest dg (2.5 cm), = dg/2L  °
ranges from 0,655 to 0.18, so that (2L/D 1log (i dg/2L) is indeed very
small, This means that the upper limit of ,_ as given in figure 4
is a good approximation to w : 1t is just needed to determine VWV
from the curve which passes tﬁrough the representative point of the
Alvarez structure, The relation @ = n/y yields the maximum angle
4 between stems for anyone of the figure 10 - configurations.

According to equation (1), lncreasing I with coustant 4y and
D, lowers w when @ is fixed. In order to keep at its optimum
value w_, It is necessary to progressively decrease B , until at some
energy afound 10 MeV this angle reaches its minimum value n/2 : the
corresponding stem configuration is then the cross-bar structure (fig.
10a) or its equivalent (fig. 10b or 10c).

Medium energies (10 - 30 MeV) 0.24{ L/D {o.41

The cross-bar siructure is adequate provided 4 is increased
with energy. In order to compute the optimum value of 4 , we observe
from figure 4 that the introduction of drift-tubes lowersS both w
and w, . Assuming as a first approximation this effect to be abbut
the same on both frequencies, we may derive the optimum dg from a
structure with stems but without drift-tubes, The problem is further
simplified by considering a square guide with side D instead of the
circular guide with diameter D . Then, as a first approximation [8],

the comdition for w = w  rTeads from equation (1)
2L : 8 RL
s
- ’ — = == 2
5 * log (n pL) o 5 K1 (2)

This relation corresponds to N = 4 with o
p =1 : 4-stem structure (stems at 90 )
p = 2 : cross-bar structure.

When IL/D increases, equation (2) becomes less accurate and
must be replaced by the more exact conditions |8] H

for the cross-bar structure

loQ
g d 2
j s L S 1 /4
- log <— —‘")='——'+l.944-n—- r (3)
4 D L D m=3,5..4,/2 2 1L
L v& -1 e2n Vﬁ —l.D o
for the 4~stem structure
) /
d 2
4 m -l 4
~ log (ﬁ —E) =t 4 1,419 - L _ : (4)
4D . % m=3,5.00 2 4 en¢mg_l'%
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In both cases the group velocity at the crossing point of the dispersion
curves is approximately given by

v
£ . 1 _
£ =~ 3= = 0.354 (5)

The relations (3) and (4) have been plotted in Tigure 12,

For the cross-bar structure
at 10 MeV, L/D = 0.24, equaticn §3) gives d4 = 2.5cm éL = 22cm)
at 30 MeV, L/D = 0.41, equation (3) gives dj =12.6cm (T = 37cm)

For the 4-stem structure
at 10 Mev, I/D = 0.24, equation (4) gives d_ = O.2em (L = 220m§
at 30 MeV, L/D = 0,41, eguation (4) gives d = l.3cm (L = 37cm

w

The cross-bar structure thus leads to practical stem diameters up
to 30 MeV, The 4-stem structure, being more efficient, would require
too thin stcms in this energy range (see fig. 12).

VWedium energies (3C ~ 50 MeV) 0.41 < IL/D < 0.52

It is row nrecessary to use at least n = 3 stems per drift-tube,
and this number is encugh, because for the 4-stem gstructure at 5¢ NMeV,

equation (4) gives 45 = 2,4 cm, The 3-stem structure of fig. 13
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will therefore need stem dlameters larger than 1.3 - 2.4 cmy but

smaller than I/n = 11.8 - 15.0 cm {the latter values would put
w, on the YV = 3/2 curve in fig. 4): it is thus adequate in the
energy rarge 30 - 50 MeV.

High energies (50 — 200 MeV) 0.52<IT/D<1.01

For the 4-stem strucsire at

50 MeV, I/D = 0.52, equation 24) gives dg
100 HeV, L/D = 0.75, equation (4) gives d
200 Mev, I/D = 1.0l, equation (4) gives dg = 7.3cm (I

2.4em (I = 47cm)
4.8ca zL = 64cm)
B 850]’[1) .

i

n

JH

The 4-stem structure cof fig. 14 is thus adequate. Another possibility
ig the 6-stem configuration of fig. 11, with three stems per drift
tube and superperiod 2TL.

6. EZPERIMENTAT, RESULTS

Zxtensive measurements of dispersicn curves have been carried
out with two scale models of linac tanks., Although the variations
of Alvarez cells with erergy were carefully reproduced on the models,
no attempt has been made to close the stopband locally along the full
length of the tank: this indeed would involve varying the stem angle
or the stem diameter from drift-tube to drift-tube. In a final
design, it should bhe done at least from one small group of drift-tubes
to the next. In our models, both the stem angle and the stem diameter
were kept constant throughouti the tank : by virtue of eguation (1),
this results in a decrease of the local oy from the low energy end
to the high energy end of the tank.

The corresponding local dispersion curves are shown in fig. 15 :
when frequency apgproaches the zero-mode of the bar resonances, the tank
is progressively cut off, starting from the long cell end in the
undercompensated case, and from the short cell end in the overcompen-
sated casc., In the vicinity of w, , the phase shift per cell o 1is
thus ne longer precisely defined, and this explains why the experimen-
tal dispersion curves show some irregularities in this frequency
region. The same argument applies to the n-mede cut-off regions.

Near w_, a tank compensated on the average is partially cut off at the
long c®11 end when m(wa, and at the short cell end when wsw_ (fig.1l5 ¢).

In all measurements the modes were identified by a bead perturba-
tion technigue. Figure 16 shows the measured variation of E% along a
tank partially cut off {modes close to the O or n-end of the stem
passband)., The zeros of the field become more widely spaced towards
the cut-off region, where the field decays to the end plate without
passing through another zero., Near the end of the tank which is cut
off, there results a long region without field zeros, that progressive-
1y shrinks as a greater length of the tank propagates.

As a check of the basic principles used in§3 and 4, fig. 17
shows a comparison between the theoretical upper limit of w deduced
from fig. 4, and the experimental value extrapclated from thg measured
dispersion curves for various stem configurations. The general trend

of @y is as expected from the theory.

When applying the theory to our variable cell models, we simply
used the arithmetic wmean value of L , which is also very close to
the length of the middle cell.

Tank 1 model (0.75 -~ 5 MeV)

With a reduction factor 0.190, this model is scaled from the
first 25 cells of the new 20 MeV linac injector for the 3 GeV proton
synchrotron SATURNE in Saclay. The stem diameter, although having
the smallest practical value of 2.5 cm at 200 MHz, still gives a
n dg/<L> as large as 0.7%4. The upper Limit of ¢ , derived as
in § %, should thus be only slightly in excess of the correct value.
In fact, the theoretical 1imit is 14%°, whereas the optimum experiment-
al value is about 135 : this is clear from fig, 18, which shows
the dispersion curves corresponding to several stem argles ﬁ .

At O-mode, the measured group velocity for the compensated
structure is 0.%94 c.

Tark 2 model (10 - 30 MeV)

With a reduction factor 0.162, this model is scaled from the
actual 4l-cell tank 2 of the CERN 50 MeV linac injector, which is
identical with the PLA Tank 2 in tke Rutherford High Fnergy Laboratory.
Since < L>/D = 0.3145, the optimum structure is the cross-bar
with dg = 9.71 mn (model value), For the 4-stem structure, equation
(4) yields dy = 0.94 mm,

In order %o check these theoretical values, measurements have
been made with dgy = 1.0 mm, 6.16 mn (scaled from the actual value
at 202,5 MHz) and 12.0 mi, using many different stem configurations.
The most interesting results have been selected in figs. 19 and 20.
It is seen that the presented theory fits well all experimental data.
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The main difference occurs forthe optimum stem diameter of the 4-stem
structure: the structure with d_ = 1.0 mm appears to be slightly under-
compensated, whereas theoretically it should be overcompensated.

At O-mode, the experimental group velocity is estimated to be
about 0,39 ¢ for the compensated cross-bar structurec, and 0.37 ¢
for the compengsated 4-stem structure. These figures compare favourab-
iy with the theoretical estimate (5).

Tank 2 model has also been used to verify that the presence of
either one stem per drift tube or two stems at 907, has only a small
influence on the ¥ passband, The first few modes of this pass-
band are plotted ino%ig. 21 for six different stem configurations

with dg = 6.16 mm., The stem configurations which yield the
gmallest mode spacing around w are No., 1 (one stem per drift
tube) and No. 2, 3 (two stems a% 900). The stem configuration
No. 1 has also been measured with dg = 1 mm: the corresponding
dispersion curve is shifted down by about 2 MHz with respect to
the case dg = 6,16 mm,

The miin effect of the stems in these configurations is to shift
® and the neighbouring modes slightly up in frequency, by an amount
which may be computed for thin stems with Slater!s perturbation formula.

Finally, it should be observed that configuration No. 1 has a
larger mode spacing than cornfigurations No. 2 and 3, despite the fact
that o is higher for the Zatter ones, The probable explanation is
that al%hough the influence of the stem passband on the B passband
is mainly determined by the difference (wg - m%), the shapé of the
B passband also depends on the coupling between stems and/or between
stems and drift-tubes.

Uniform 100 MeV models (Brookhaven, Los Alamos)

In the energy range 50 - 200 MeV, the 4-stem structure is adequate.
On his & cell, 10C MeV model l6], Giordano closed the stopband by
putting 1.905 cm.flares on the stems (he used dg = 0,635 cm), whereas
equation (4) predicts an pptimum stem diameter of 1l.15 cm. Similarly,
Los Alamos measurements on a 10 cell, 92.7 MeV model le] show the stem
diameter to be about 2.016 cm for closed stopband, whereas the computed
value is 1.75 cm.

The experimental group velocity at O-mode is 0.322 ¢ for the
Brookhaven model, and 0,352 c¢ for the Los Alamos model.

Te CONCLUSION

The presented theory, although approximate, enables one to
choose from all multistem structures the stem configuration that,
with a practical stem diameter, suppresses the stopband at the operat-
ing EOlO mode for any proton energy in the range 0,75 ~ 200 MeV.

Instead of stems, other couplers may be used to produce a second
passband which is adjusted to cross the E passband at O-mode., For
example, alternating T-bar and post couplerS have recently been investi-
gated in Los Alamos on a 10 cell, 92.7 ¥eV model [10] « These couplers
are easier to tune and present less RF losses than 4 stems. Neverthe-
less, due to a smuller coupling with the drift-tubes, they produce a
smaller group velocity at O-mode in a compensated structure: +this gioup
velocity is of the order of 0.12 ¢, compared with 0.354 ¢ for a compen-
sated 4-stem structure.

Finally, it shculd be remembered 5] that for energies above
100 MeV, the cross-bar structure operated in the n/2 mode of the stem—
passband, features large mode spacing with a higher shunt impedance
than the Alvarez structure. (This mode is called n mode in ref.5.
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TANK 1-MODEL

THEORETICAL  UPPER
EXTRAPOLATED EXPERIMENTAL VALUES (MHz)

LIMIT (MHz)
D= 190 mm
462 W@ <d>=3386 mm
<f>= 1979 mm
ds = 50mm
805 640
BOMBCENCE
215 @ 1190 @ 170 @ 1130
TANK 2-MODEL
D= 150 mm
d= 287 mm
5% %:120 5% <L>= 4719 mm
ds =616 550
dg in mm
258 dss 10 800 ds=120 710
ds=616 70 ds *6,16 670
— Sterms on even chift tubes
—— —~ Sterns on odd drift tubes
0% dos=120 1080 as= 120 w0
ds =616 1000 ds =6% 800
1931 ds~§.16 1450 ds=615 1210 ds=616 1200
ds=10 1200 ’ ds=10 960

Figure 17. COMPARISON OF THEORETICAL AND EXPERIMENTAL VALUES OF £,
FOR  VARIOUS STENM _LCOVFIGURATIONS
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