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1. INTRODUCTION 
Conventional Alvarez proton linacs are operated at the zero-mode 

cut-off frequency of the E01 standing wave in a drift-tube loaded 
circular tank. The frequency difference between the operating mode and 
the adjacent mode is small, making the Alvarez structure rather sensitive 
to individual cell tuning errors [l] and beam-loading compensation [2] . 

Great advantage could thus be gained by increasing as much as 
possible the mode spacing around the operating E010 mode. This means 
modifying the dispersion curve of the E01 passband, which is possible 
only if this passband is coupled to another passband, the position of 
which could be largely varied with respect to the E01 passband [3] . 
It should be noticed that this principle was discovered in 1956 by the 
Harwell team [4] . 

The work undertaken in the Rutherford High Energy Laboratory and 
later on in CERN, on the cross-bar structure, had shown the existence 
of a lower passband, of the backward wave type, due to the bar resonan­
ces. The O-mode cut-off frequency ωb of this lower passband rises 
continuously with increasing bar diameter, whereas the E010 cut-off 
frequency ωa remains practically unchanged [5]. An interesting 
situation arises when ωb = ωa : for this particular bar diameter, 
the two passbands (bar and E01) cross each other at O-mode with a 
finite slope, thereby producing large mode spacing near this point. 
In fact, this is the only case where the two dispersion curves cross 
each other: if the bar diameter is further increased, the O-mode of 
the lower passband stays unchanged at the frequency ωa of the Alvarez 
field configuration, while the upper passband starts s t i l l higher in 
frequency (see fig. l ) . A new stopband arises, and the mode spacing 
around the Alvarez operating point decreases, due now to the adjacent 
mode in the lower passband. The largest mode spacing is thus obtained 
when the two passbands cross at O-mode. 

An important remark should be made about the field configurations 
which correspond to ωa and ωb : ωa is the frequency of an Alvarez 
field configuration, i.e. a loaded E010 type of field. As such, it 
is only slightly perturbed by the bars irrespective of their diameter, 
because the bars are perpendicular to the electric field in this con­
figuration and they do not carry any net longitudinal current. On the 
other hand, ωb is the zero-mode frequency of the bar resonances, 
which are associated with currents flowing along the bars, all currents 
being equal in amplitude and phase throughout the structure. If, as 
usual, the cavity is terminated by a metallic end-plate placed in a 
cell symmetry plane, the boundary conditions require that, in O-mode, 
these currents be zero in all bars. The corresponding fields are there­
fore zero everywhere, making it impossible to excite this tield eon-
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figuration and to directly measure ωb, in a cavity of finite length. 
It is thus clear that, when ωb = ωa, the only field configuration 
which can be excited in a practical cavity at this frequency is the 
Alvarez type of field, and this conclusion has been confirmed in all 
our measurements. 

We have explained how, for the cross-bar structure, crossing of 
the two passbands can be achieved by increasing the bar diameter to a 
suitable value. In the Alvarez structures which have been built up to 
now, each drift tube is supported by one stem, or eventually by two 
stems at 90o . The resonances of these drift-tube terminated stems 
constitute a second passband, similar to the cross-bar passband, but 
which lies in general well below the normal E01 passband. It was 
Giordano's idea to push this lower passband up in frequency b in­
creasing the number of stems [6] , thereby producing what he called 
a multistem structure, On his 100 MeV proton linac model, Giordano 
found that 4 flared stems were needed to get the E01 and the stem-
passband crossing each other at O-mode. In fact, Giordano's early 
measurements [7] stimulated at CERN an attempt to produce a theory 
which would give the conditions for stopband elimination in the ease 
of a more general stem arrangement than the cross-bar structure. This 
general theory will now be presented. 

2. THE CASE OF INFINITELY SHORT CELLS 
a) One stem per drift tube. In order to produce the ωb field 

configuration, we must imagine an infinitely long cavity where all bars 
carry identical currents and all drift tubes are charged with identical 
electric charges (see fig. 2a). In this case there is l i t t l e field in 
the gaps between the drift tubes, and we do not alter the frequency 
very much if we fil l in the gaps with metal, thus obtaining the arrange­
ment of fig. 2b where a coaxial inner conductor having the same diameter 
d as the drift tubes is periodically supported by the stems. Now, if 
the distance L between adjacent stems is very small compared with the 
cavity diameter, the stems may be replaced by a thin partition wall 
extending between the inner and outer cylinders, as in fig. 2c. Finally 
we have transformed our initial structure into a uniform cylindrical 
coaxial waveguide with a partition wall representing the stems. 

In order to produce the ωb field configuration, the currents 
on both sides of the partition wall must flow in the same direction 
and this direction must be radial. Therefore, the uniform waveguide 
mode which represents the ωb field configuration is an H mode 
at cut-off, with Hz varying as cos (see fig. 2d). Since Hz must 
change sign on both sides of the partition wall, must be a half-
integer and the lowest mode corresponds to = 1/2. Therefore, in 
the case of one stem per drift tube and very short cells, a good 
approximation to ωb is given by the frequency of the H f i r s t 
mode in the equivalent uniform coaxial waveguide. Let us remark in 
passing that this equivalence only applies at O-mode. 

The current distribution along the stems is given by the radial 
variation of Hz, i .e. by Bessel functions of order and argument kr. 
For the first H mode, Hz has no zero between the inner and outer 
cylinders, and therefore the current keeps a constant sign along the 
stems. 

b) Two stems per drift tube. The two stems define two angles: 
one is smaller, the other larger than π. Let us call Ø the latter 
one. Reasoning as before, we see that for very short cells a good 
approximation to ωb is given by the frequency of the H mode in 
the equivalent uniform coaxial waveguide with two partition walls at 
an angle Ø (see fig. 3). Two cases are possible, according to 
whether the currents in the two stems have the same (fig. 3a) or have 
opposite (fig, 3b) radial sign: In the first case Ø/π must be 
an odd integer, in the second case it must be an even integer. 

Figure 4 shows a graph of ωD/2c for the H mode as a func­
tion of d/D, with as parameter. When > 0 this mode is the 
dominant mode (mode with the lowest cut-off frequency) in the coaxial 
partitioned waveguide: i t corresponds to an azimuthal resonance, by 
contrast with all the upper modes which correspond to radial resonances, 
where Hz undergoes at least one change of sign between the inner and 
outer cylinders. For = 0 there is no azimuthal resonance possible, 
and the lower mode already corresponds to a radial resonance which is 
much higher in frequency (ωD/2c is at least 3.832). Disregarding 
therefore the case = 0, we see on figure 4 that ωD/2c is an ever 
increasing function of . 

Since ωb is the cut-off frequency of the lowest passband, i t 
must be as low a frequency as possible. Therefore, for a given Ø, 
i t corresponds to the lowest value of Ø/π , that is Ø/π = 1 
(see fig. 3a). The possibility of the radial currents having opposite 
signs (fig. 3b), since it corresponds to higher values of Ø/π, 
needs no further consideration. 
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It is thus easy to vary and ωb by varying the angle Ø 
between the stems, a larger angle producing a lower frequency. Since 
two angles are defined by the two stems, i t might be expected that 
two 0-mode frequercies and therefore two passbands are associated with 
stem resonances such that Ø/π = 1 . Go far we have not found any 
experimental evidence for a higher stem-passband of this type. There­
fore, only the lowest frequency, determined by the largest angle between 
stems, will be considered in what follows: this is the reason why we 
take Ø ≥ π. Consequently, a two-stem structure allows the range 
1/2 ≤ ≤ 1 to be covered. The maximum value = 1 is obtained 
with two stems equally spaced at 180o. 

c) Three stems per drift tube. Since only the largest angle Ø 
defined by the stems is relevant, we do not change ωb by taking the 
two smaller angles as equal : this gives the symmetrical arrangement 
of figure 5a. I t is obvious from this figure that Ø may be varied 
from 2π to 2π/3. The range 2π ≥ Ø ≥ π being already covered 
with two stems per drift tube, the range π ≥ Ø ≥ 2π/3 is typical of 
a three-stem structure : i t can also be achieved with the symmetrical 
arrangement of figure 5b. 

Therefore, a three-stem structure allows the range 1/2 ≤ ≤ 3/2 
to be covered. The maximum value = 3/2 is obtained with the 
stems equally spaced at 120°. 

d) Four stems per drift tube. Calling always Ø the largest 
angle defined by the stems, we may assume that Ø ≤ π (the larger 
values of Ø may be obtained with two stems). We do not change ωb 
if we take the second large angle as equal to Ø , and divide the 
remaining angle in two equal parts (π-Ø) : this gives the symmetrical 
arrangement of figure 6a, which may be transformed into the even more 
symmetrical arrangement of figure 6b. I t is clear that Ø may be 
varied from π to π /2 . 

Consequently, a four-stem structure allows.the range l/2 ≤ ≤ 2 
to be covered. The maximum value = 2 is obtained with the stems 
equally spaced at 90o. 

More generally, a N-stem structure allows the range 1/2 ≤ ≤ N/2 
to be covered. The maximum value = N/2 is obtained with equally 
spaced stems. 

3. THE CASE OF FINITE CELL LENGTH L. 

Strict ly speaking, the above results only apply to infinitely 
short cells and, because ds/L ≤ 1, also to infinitely thin stems. 
When L is f ini te , i t may be expected that, if thick enough, the 
stems will s t i l l be equivalent to a continuous partition wall at 
O-mode. In fact, the effect of stem diameter may be investigated by 
considering (see fig. 2b) a stem as the inner conductor of a trans­
mission l ine, the outer "conductor" being constituted by the cavity 
walls assumed to be at a constant distance D/2, and by two magnetic 
walls at a distance L/2 (see f ig. 7). The characteristic imoedance 
of such a line is readily obtained as 

zo ≈ 1 
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This line is short-circuited at one end by the cavity wall, and 
terminated at the other end by the drift tube capacitance C, which 
may be approximated as C. L where C1 is the capacitance per unit 
length of the central pipe in figure 2b. In case of one or two stems 
per drift tube, the O-mode stem resonance is thus roughly given by 
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Detailed calculations on the cross-bar and the 4-stem structures [8] 
replace this equation by the more general one 

f (kD) 2 ] = L 
D l o g (π 

d s 

L ) 
L 
D « 1 ( 1 ) 

where f is an ever increasing function of i t s argument, but different 

for each stem configuration. 
The general relation (l) yields two important results: 
l) ωb is an ever increasing function of d s . 
2) the same ωb is obtained for L 

D = 0 and for π 
ds 

L = 1. 
This result is obviously approximate because equation (1) only holds 

when L/D « 1. 

By increasing π ds/L from 0 to 1 , i t is thus possible to 
raise ωb continuously from zero (for a structure with drift-tubes) to 
the limit obtained for infinitely short cells. 

Conclusion: For a finite cell length, the frequency ω plotted 
in figure 4 is an upper limit of ωb, which can be reached only with 
thick stems (such that π ds/L ≈ l ) . 

4. THE USE OF A SUPERPERIOD pL. 

In order that the arguments of 2 for infinitely short cells to 
be valid, i t is not necessary that every drift tube is supported by 
N stems, giving the structure a period L along the z-axis. Instead, 
the structure may have a period p L (p = 1, 2, 3. . . ) involving less 
than N stems per drift-tube, under the condition that the cross-
sectional projections of a l l stems contained in a superperiod would 
yield a N-stem pattern, like those in figures 3, 5 and 6. All these 
structures have the same frequency limit ωb for infinitely short cel ls , 
as plotted in figure 4 : but in order to reach this limit with finite 
cells, they will need stems about p times as thick (such that 
π ds/pL ≈ l ) as a N-stem structure with period L . If used with the 
same stem diameter, they will have a lower ωb than the l a t t e r : in 
other words, they are less efficient in raising ωb . 

Nevertheless, for a given number n of stems on each drift tube, 
the stem arrangement in a superperiod pL (p> l ) yielding a N-stem 
pattern (N > n) will be more efficient than the normal n-stem pattern 
with period L . Even if both structures have the same stem diameter, 
this argument s t i l l applies because the ωb - upper limit strongly 
increases with N (see fig. 4) although the variation of ωb with 
ds/L is slow, happening only through (pL/D) log (π ds/pL) as shown in 
equation ( l ) . 

The extreme ease would be realized with n=l, p=N: the correspond­
ing structure would have one stem per drift tube, with stems helically 
arranged in a superperiod NL. Such a structure, however, has no symmetry 
plane where to put the metallic end-plates closing the cavity. In order 
to keep a symmetry plane in the structure, the best choice i s p = 2 
because i t avoids repeating the same stem arrangement in one superperiod. 

With p = 2 we may take n = N/2 or(N+l)/2, according to which 
is an integer. Doing so, we transform the stem arrangements of figures 
3a, 5b and 6b respectively into those of figures 8, 9, 10. Figure 9 
and the three arrangements of figure 10, having the same angle Ø and 
the same superperiod, are practically equivalent. I t should be noticed 
that figure 10a when Ø = π/2 is nothing but the cross-bar structure. 
Finally, figure 11 shows the most efficient structure having three stems 
per drift tube. 

5. CHOICE OF OPTIMUM STEM CONFIGURATION 

As made clear in 1, the optimum stem configuration and stem 
diameter are such that ωb = ωa. Representative points of the 
0-mode frequency co of typical Alvarez structures [9] are indicated 
in figure 4, for a proton energy range 1-200 MeV : they all fall 
between the curves V = 1 and V = 3/2 corresponding to N = 2 
and F = 3. Since these curves represent an upper limit of to, for 
thick stems, i t is obvious that at least a 3-stem pattern is needed. 
With a superperiod 2L, this leads to use two stems per drift tube, 
with the 3-stem configuration of fig. 9 or the more symmetrical 4-stem 
configurations of fig. 10. In what follows, we retain only the latter 
ones. 

For comparison, the stem configurations which have been used 
so far in proton linacs are 1 stem (figure 2d) or 2 stems at 90 
(figure 3a). Since the corresponding values are so low as 1/2 and 
2 / 3 , ωb is always much lower than ωa. The stem passband is then 
so distant from the E01 passband thataits influence on the latter is 
very small : with respect to the no-stem case, the effect on mode 
spacing around co is almost negligible. The same argument would 
apply to multistem configurations, if the stems are thin enough. 
Nevertheless, for 2 stems at 180°, V = 1 and with practical stem 
diameters, ωb may come rather close to ωa (depending on the 
energy) : the influence of the stems on the E01 dispersion curve 
must then not be neglected (see later, curves 4 and 5 in figure 2l). 
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RF losses on the stems being proportional to their diameter, 
thin stems would be desirable. But for mechanical reasons, a stem 
diameter of 2.5 cm at 200 MHz seems a minimum : we therefore restr ic t 
the practical stem diameters to the range 2.5 - 12.5 cm. Since the 
effect of ds/L on ωb appears only through (pL/D) log (π ds/pL) , i t 
will be very small at low energies (L/D l) while becoming more 
pronounced at high energies. 

low energies (0.75 - 10 MeV) 0.064- <L/D <0.24 
Due to the smallness of L/D , i t is impractical to adjust ωb 

by varying d s . Even with the smallest ds (2.5 cm), π ds/2L 
ranges from 0.655 to 0.18, so that (2L/D) log (π ds/2L) is indeed very 
small. This means that the upper limit of ωb as given in figure 4 
is a good approximation to ωb : i t is just needed to determine from the curve which passes through the representative point of the 
Alvarez structure. The relation Ø = π/ yields the maximum angle 
Ø between stems for anyone of the figure 10 - configurations. 

According to equation ( l ) , increasing L with constant ds and 
D, lowers ωb when Ø is fixed. In order to keep ωb at i t s optimum 
value ωa, i t is necessary to progressively decrease Ø , until at some 
energy around 10 MeV this angle reaches i t s minimum value π/2 : the 
corresponding stem configuration is then the cross-bar structure (fig. 
10a) or i t s equivalent (fig. 10b or 10c). 

Medium energies (10 - 30 MeV) 0.24 <L/D <0.41 
The cross-bar structure is adequate provided d is increased with energy. In order to compute the optimum value of ds, we observe from figure 4 that the introduction of drift-tubes lowers both ωa and ωb. Assuming as a f i rs t approximation this effect to be about the same on both frequencies, we may derive the optimum ds from a structure with stems but without drift-tubes. The problem is further simplified by considering a square guide with side D instead of the circular guide with diameter D . Then, as a f i rs t approximation [8], the condition for ωb = ωa reads from equation ( l ) : 
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This relation corresponds to N = 4 with 
p = 1 : 4-stem structure (stems at 90o) 
p = 2 : cross-bar structure. 
When L/D increases, equation (2) becomes less accurate and 

must be replaced by the more exact conditions [8] : 
for the cross-bar structure 
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for the 4-stem structure 
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In both cases the group velocity at the crossing point of the dispersion 
curves is approximately given by 

Vg 
c ≈ 1 

2 √2 = 0 . 3 5 4 ( 5 ) 

The relations (3) and (4) have been plotted in figure 12. 
For the cross-bar structure 
at 10 MeV, L/D = 0.24, equation (3) gives ds = 2.5cm (L = 22cm) 
at 30 MeV, L/D = 0.41, equation (3) gives ds =12.6cm (L = 37cm) 
For the 4-stem structure 
at 10 MeV, L/D = 0.24, equation (4) gives ds = 0.2cm (L = 22cm) 
at 30 MeV, L/D = 0.41, equation (4) gives ds = 1.3cm (L = 37em) 

The cross-bar structure thus leads to practical stem diameters up 
to 30 MeV. The 4-stem structure, being more efficient, would require 
too thin stems in this energy range (see fig. 12). 

Medium energies (30 - 50 MeV) 0.41 <L/D <0.52 
It is now necessary to use at least n = 3 stems per drift-tube, 

and this number is enough, because for the 4-stem structure at 50 MeV, 
equation (4) gives ds = 2.4 cm. The 3-stem structure of fig. 13 

will therefore need stem diameters larger than 1.3 - 2.4 cm, but 
smaller- than L/π = 11.8 - 15.0 cm (the l a t t e r values would put 
ωb on the = 3/2 curve in fig. 4) : i t is thus adequate in the 
energy range 30 - 50 MeV. 

High energies (50 - 200 MeV) 0.52 <L/D <1.01 
For the 4-stem structure at 
50 MeV, L/D = 0.52, equation (4) gives ds = 2.4cm (L = 47cm) 

100 MeV, L/D = 0.75, equation (4) gives ds = 4.8cm (L = 64cm) 
200 MeV, L/D = 1.01, equation (4) gives ds = 7.3cm (L = 85cm). 

The 4-stem structure of fig. 14 is thus adequate. Another possibility 
is the 6-stem configuration of fig. 11, with three stems per drift 
tube and superperiod 2L. 

6. EXPERIMENTAL RESULTS 

Extensive measurements of dispersion curves have been carried 
out with two scale models of linac tanks. Although the variations 
of Alvarez cells with energy were carefully reproduced on the models, 
no attempt has been made to close the stopband locally along the full 
length of the tank: this indeed would involve varying the stem angle 
or the stem diameter from drift-tube to drift-tube. In a final 
design, i t should be done at least from one small group of drift-tubes 
to the next. In our models, both the stem angle and the stem diameter 
were kept constant throughout the tank : by virtue of equation (1), 
this results in a decrease of the local ωb from the low energy end 
to the high energy end of the tank. 

The corresponding local dispersion curves are shown in fig. 1 5 : 
when frequency approaches the zero-mode of the bar resonances, the tank 
in progressively cut off, starting from the long cell end in the 
undercompensated case, and from the short cell end in the overcompen-
sated case. In the vicinity of ωb, the phase shift per cell θ is 
thus no longer precisely defined, and this explains why the experimen­
ta l dispersion curves show some irregulari t ies in this frequency 
region. The same argument applies to the π-mode cut-off regions. 
Near ωa, a tank compensated on the average is partially cut off at the 
long cell end when ω<ωa , and at the short cell end when ω>ωa (fig.15 c). 

In al l measurements the modes were identified by a bead perturba­
tion technique. Figure 16 shows the mesured variation of E2

z along a 
tank partially cut off (modes close to the or π-end of the tem 
passband). The zeros of the field become more widely spaced towards 
the cut-off region, where the field decays to the end plate without 
passing through another zero. Near the end of the tank which is cut 
off, there results a long region without field zeros, that progressive­
ly shrinks as a greater length of the tank propagates. 

As a check of the basic principles used in 3 and 4, fig. 17 
shows a comparison between the theoretical upper limit of ωb deduced 
from fig. 4, and the experimental value extrapolated from the measured 
dispersion curves for various stem configurations. The general trend 
of ωb i s as expected from the theory. 

Then applying the theory to our variable cell models, we simply 
used the arithmetic mean value of L , which i s also very close to 
the length of the middle cell. 

Tank 1 model (0.75 - 5 MeV) 
With a reduction factor 0.190, this model i s scaled from the 

f i r s t 25 cells of the new 20 MeV linac injector for the 3 SeV proton 
synchrotron SATURNE in Saclay. The stem diameter, although having 
the smallest practical value of 2.5 cm at 200 MHz, s t i l l gives a 
π d s /<L> as large as 0.754. The upper limit of Ø , derived as 
in § 5, should thus be only slightly in excess of the correct value. 
In fact, the theoretical limit is 143 , whereas the optimum experiment­
al value is about 135: this is clear from fig. 18, which shows 
the dispersion curves corresponding to several stem angles Ø. 

At 0-mode, the measured group velocity for the compensated 
structure is 0.394 c. 

Tank 2 model (10 - 30 MeV) 
With a reduction factor 0.162, this model i s scaled from the 

actual 41-cell tank 2 of the CERN 50 MeV linac injector, which is 
identical with the PLA Tank 2 in the Rutherford High Energy Laboratory. 
Since <L>/D = 0.3145, the optimum structure i s the cross-bar 
with ds - 9.71 mm (model value). For the 4-stem structure, equation 
(4) yields ds = 0.94 mm. 

In order to check these theoretical values, measurements have 
been made with ds = 1.0 mm, 6.16 mm (scaled from the actual value 
at 202.5 MHz) and 12.0 mm, using many different stem configurations. 
The most interesting results have been selected in figs. 19 and 20. 

It is seen that the presented theory fits well all experimental data. 
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The main difference occurs for the optimum stem diameter of the 4-stem 
structure: the structure with ds = 1.0 mm appears to be slightly under­
compensated, whereas theoretically i t should be overcompensated. 

At 0-mode, the experimental group Telocity is estimated to be 
about 0.39 c for the compensated cross-bar structure, and 0.37 c 
for the compensated 4-stem structure. These figures compare favourab­
ly with the theoretical estimate (5). 

Tank 2 model has also been used to verify that the presence of 
either one stem per drift tube or two stems at 90o , has only a small 
influence on the E01 passband. The f i rs t few modes of this pass¬ 
band are plotted in fig. 21 for six different stem configurations 
with ds = 6.16 mm. The stem configurations which yield the 
smallest mode spacing around ωb are No. 1 (one stem per drift 
tube) and No. 2, 3 (two stems at 90°). The stem configuration 
No. 1 has also been measured with ds = 1 mm: the corresponding 
dispersion curve is shifted down by about 2 MHz with respect to 
the case ds = 6.16 mm. 

The main effect of the stems in these configurations i s to shift 
ω and the neighbouring modes slightly up in frequency, by an amount 
which may be computed for thin stems with Slater 's perturbation formula. 

Finally, i t should be observed that configuration No. 1 has a 
larger mode spacing than configurations No. 2 and 3, despite the fact 
that ωb i s higher for the la t t e r ones. The probable explanation is 
that although the influence of the stem passband on the E01 passband 
is mainly determined by the difference (ωa

2 - ωb
2), the shape of the 

E01 passband also depends on the coupling between stems and/or between 
stems and drift-tubes. 

Uniform 100 MeV models (Brookhaven, Los Alamos) 
In the energy range 50 - 200 MeV, the 4-stem structure is adequate. 

On his 6 cel l , 100 MeV model [6] , Giordano closed the stopband by 
putting 1.905 cm flares on the stems (he used ds = 0.635 cm), whereas 
equation (4) predicts an optimum stem diameter of 1.15 cm. Similarly, 
Los Alamos measurements on a 10 cel l , 92.7 MeV model [l0] show the stem 
diameter to be about 2.016 cm for closed stopband, whereas the computed 
value is 1.75 cm. 

The experimental group velocity at 0-mode is 0.322 c for the 
Brookhaven model, and 0,352 c for the Los Alamos model. 

7. CONCLUSION 

The presented theory, although approximate, enables one to 
choose from all multistem structures the stem configuration that, 
with a practical stem diameter, suppresses the stopband at the operat­
ing E010 mode for any proton energy in the range 0.75 - 200 MeV. 

Instead of stems, other couplers may be used to produce a second 
passband which is adjusted to cross the E01 passband at 0-mode. For 
example, alternating T-bar and post couplers have recently been investi­
gated in Los Alamos on a 10 cell, 92.7 MeV model [10] . These couplers 
are easier to tune and present less RF losses than 4 stems. Neverthe­
less, due to a smaller coupling with the drift-tubes, they produce a 
smaller group velocity at 0-mode in a compensated structure: this group 
velocity is of the order of 0.12 c, compared with 0.354 c for a compen­
sated 4-stem structure. 

Finally, i t should be remembered [5] that for energies above 
100 MeV, the cross-bar structure operated in the π/2 mode of the stem-
passband, features large mode spacing with a higher shunt impedance 
than the Alvarez structure. (This mode is called π mode in ref.5.) 
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figure 1. Dispersion curves of the E01 and bor passbands 
(The bar diameter is increasing from a to c) . 

Figure 2 . Successive t ransformat ion of a s t ructure with sho r t 
c e l l s D - m o c k . 

Conduction current 
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Figure 3. Two s t e m s p e r drift tube 

Figure 5 Three stems per drift tube 

Figure 6 Four stems per drift tube 

Figure 7- Cross-section of the stem transmission line 
in 0-made 

Figure 8. N-2 , n = 1 Figure 9. N - 3 , n = 2 
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Figure 10. N-4,n=2 
Figure 11. N-, n-3 figure 13. N-3, n-3 Figure 14.N-4, n-4 

Figure 15. Dispersion curves for variable L structures (L1<L2) 
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Figure 16. Variation of Ez
2 along tank 2-model (41 c e l l s ) , 

showing partial cut- off near 0-mode. Part 1. 
Figure 16. Variation of Ez

2 along tank 2-model (41 cells), 

showing part ial cut-off near 0-mode. Part 2. 
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Figure 17. COMPARlSON OF THEORETICAL AND EXPERIMENTAL VALUES OF fb 

FOR VARIOUS STEM CONFIGURATIONS 



A-28 



A-29 


