8,492 research outputs found

    Static internal performance of an axisymmetric nozzle with multiaxis thrust-vectoring capability

    Get PDF
    An investigation was conducted in the static test facility of the Langley 16 Foot Transonic Tunnel in order to determine the internal performance characteristics of a multiaxis thrust vectoring axisymmetric nozzle. Thrust vectoring for this nozzle was achieved by deflection of only the divergent section of this nozzle. The effects of nozzle power setting and divergent flap length were studied at nozzle deflection angles of 0 to 30 at nozzle pressure ratios up to 8.0

    Effects of empennage surface location on aerodynamic characteristics of a twin-engine afterbody model with nonaxisymmetric nozzles

    Get PDF
    An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of empennage surface location and vertical tail cant angle on the aft-end aerodynamic characteristics of a twin-engine fighter-type configuration. The configuration featured two-dimensional convergent-divergent nozzles and twin-vertical tails. The investigation was conducted with different empennage locations that included two horizontal and three vertical tail positions. Vertical tail cant angle was varied from -10 deg to 20 deg for one selected configuration. Tests were conducted at Mach number 0.60 to 1.20 and at angles of attack -3 to 9 deg. Nozzle pressure ratio was varied from jet off to approximately 9, depending upon Mach number. Tail interference effects were present throughout the range of Mach numbers tested and found to be either favorable or adverse, depending upon test condition and model configuration. At a Mach number of 0.90, adverse interference effects accounted for a significant percentage of total aft-end drag. Interference effects on the nozzle were generally favorable but became adverse as the horizontal tails were moved from a mid to an aft position. The configuration with nonaxisymmetric nozzles had lower total aft-end drag with tails-off than a similar configuration with axisymmetric nozzles at Mach numbers of 0.60 and 0.90

    Dedication

    Get PDF

    Kinetic phenomena in mechanochemical depolymerization of poly(styrene

    Get PDF
    Please click Additional Files below to see the full abstract

    Invasion genetics of New World medflies: testing alternative colonization scenarios

    Get PDF
    The Mediterranean fruit fly (Ceratitis capitata) is an invasive agricultural pest with a wide host range and a nearly global distribution. Efforts to forgo the medfly\u27\u27s spread into the United States are dependent on an understanding of population dynamics in newly established populations elsewhere. To explore the potential influence of demographic and historical parameters in six medfly populations distributed from Mexico to Peru, we created population genetic null models using Monte Carlo simulations. Null expectations for genetic differentiation (F ST) were compared with actual sequence variation from four highly polymorphic nuclear loci. Four colonization scenarios that were modeled led to unique genetic signatures that could be used to interpret empirical data. Unless current gene flow across Latin America was assumed to be very high, we could reject colonizations consisting of multiple introductions, each of low genetic diversity. Further, if simulated populations were small (N e = 5 × 102 individuals per population), small invasions from a single source consistently produced F ST values comparable to those currently observed in Latin America. In contrast, only large invasions from diverse sources were compatible with the observed data for large populations (N e 5 × 103). This study demonstrates that alternative population genetic hypotheses can be tested empirically even when departures from equilibrium are extreme, and that population genetic theory can be used to explore the processes that underlie biological invasions

    Ultrastructural Modification of the Plasma Membrane in HUT 102 Lymphoblasts by Long-Wave Ultraviolet Light, Psoralen, and PUVA

    Get PDF
    Ultrastructural alterations of the plasma membrane in HUT 102 lymphoblasts were assessed after a 2-h interaction with a suprapharmacologic (15 μ/m1) concentration of 8-MOP, 2-h irradiation with UVA (2.1 mW/cm2), and the exposure of the HUT 102 cells to PUVA under the same conditions.The dark reaction of HUT cells with 8-MOP resulted in the disappearance of microvilli, the emergence of plasma-membrane-associated spherical bodies, formation of lamellar fungiform membrane evaginations, and, in approximately 1% of the cells, formation of uropods and cell capping. Except for uropod formation and cell capping, UVA has induced the same plasma-membrane alterations, and was more deleterious to structural cytoplasmic integrity than 8-MOP. Morphologic changes of the plasma membrane in PUVA- exposed cells tended to replicate structural alterations elicited independently during the dark reaction by suprapharmacologic 8-MOP concentrations. Partial retention of microvilli by cells after PUVA was the sole exception.In light of all available evidence we conclude that psoralen during the dark reactions interacts with plasma membrane lipids by as yet undisclosed mechanisms and that in addition to lipids, membrane proteins are also the primary target of the initial interaction of HUT 102 cells with psoralen during PUVA treatment
    corecore