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1. Introduction. The Feld series

S ab—5—,

a=1 1—a,2"
where {a,} and {b,} are arbitrary sequences of complex valued constants,
has as its exponential analogue the general B-series

B@= 3 a,b,— "
n=1 l—a,e '
obtained by replacing 2" by e *»*, where {\,} is a monotone increasing
unbounded sequence of real numbers.

It is the purpose of this paper to consider the regions of convergence
of the B-series, the representation of a B-series as a Dirichlet series and
conversely, and finally certain restrictions on the a,, b, and ), which
will insure that the function represented by the B-series will have a
natural boundary.

Since all but a finite number of the X\, will be positive, we shall
consider ), to be positive for all n. Further, in order to avoid the
singular points of the various terms of the B-series, we shall restrict
the sequence {a,} so that for some constants L and M, L<(In |a,)/N, <M
for all n. The following notation will be standard:

M=least upper bound {(In|a,]|)/N,}
L=greatest lower bound {(In |a,|)/N\.}
M={z: R(z)>M}
L={z: R(z)< L}
P=MUL={z: R(z) >M or R(z)<L}
O=MNNR, where R={z: R(z)>0}.
Unless otherwise indicated all summations will range from n=1 to oo.

2. Convergence of the B-series. The following are given with-
out proof.

THEOREM 1. (A) If the series >, b, converges,

(i) and the sequence {a,} is bounded, the B-series converges for all
z in B for which R(z)>0;

(ii) and the sequence {a,} is bounded such that for all n,0< H<|a,|< K,
the B-series converges for all z in B for which R(z)<0;
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(iii) the B-series comwerges for all z in P for which R(z)=0 and
for which the series > |a,e~**| converges.

(B) Whether or mot the series >, b, converges,

(i) if the sequence {a,} s bounded, the B-series converges and
diverges with the associated Dirichlet series >, a,b,e~** for all z in P
Sor which R(z)>0;

(ii) the B-serties converges and diverges with the assoctated Dirichlet
series >, a,b,e " for all values of z in B for which R(z)<0 and for
which the series >, |a,e~**| converges.

Theorem 1 remains true if ordinary convergence and divergence is
replaced throughout by absolute convergence and divergence.

By the angular region T=T(z/,«) will be meant the set of all
points z in the angular region with vertex at 2'=a'+1y" and defined
by |arg (z—?')|<a<m/2. The T*=T*(, a) region is the set of points
symmetric to the set T where 2z’ is the center of symmetry.

THEOREM 2. (A) If the sequence {a,} is bounded and if the B-
series converges at 2 where R(z')>0, the B-series converges uniformly
throughout PN T, where T=T(, a).

(B) If both the B-series and the series >, |a,e *»*| converge at 2’
where R(2')<0, the B-sertes converges umiformly throughout TN T,
where T*=T*@7, «).

THEOREM 3. (A) If the sequence {a,} is bounded and the B-series
converges absolutely at z' where R(z')>0, then the B-series converges
absolutely and uniformly throughout L' NU, where U={z: R(z)>R(z")}.

(B) If both the B-series and the series >, a,e~*»* converge absolutely
at 2 where R(z')<0, the B-series converges absolutely and uniformly
throughout the region L NN*, where N* ={z: R(z) <R(2')}.

3. Relationship between the B-series and general Dirichlet series.
Performing the indicated division of the n-th term of the B-series gives,
at least formally,

a,b, = > b, are ™"
l—a,e ™ ==
and hence
e—an o oo
(1) Sab——m =3 3 b.are "

Summing the terms of the double series (1) according to increasing
values of m\, results in a general Dirichlet series

(2) ,2 he—tv
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In order to establish the convergence of this last series, consider the
double series in (1) taking the absolute value of the various terms. The
n-th row converges for all z=2-+14y in O to

|a,b, | e~*
1—Ja,|e "

The sum of the “row-sums” will then be

> fa,b,
Ap0p |

1—|a,|e "
which converges for those z in © for which B(z) converges absolutely,
provided the sequence {a,} is bounded; hence for such values of z the
double series in (1) is absolutely convergent and its terms can be deranged
in any manner without affecting convergence. The Dirichlet series is
one such derangement. We have therefore

THEOREM 4. In its region of absolute convergence in the half plane
D a B-series can be expressed as a Dirichlet series which converges
absolutely and represents the same analytic fumction in that region,
provided the sequence {a,} is bounded.

Conversely we have

THEOREM 5. A given Dirichlet series can be formally expressed as
a B-series. In its region of absolute convergence in the half plane O
the resulting B-series represents the same analytic function as does the
given Dirichlet series, provided the sequence {a,} of the B-series is
bounded.

Verification of this last theorem is again by use of the double
series in (1).

4. A special B-series; its relation to ordinary Dirichlet series.
If the sequence {\,} of the B-series is taken to be {Ilnn} there results
the ordinary B-series

by a,,b,,—-—-—n—_z—— .
l—-a,n*
We shall develop a relationship between this series and ordinary Dirichlet
series which is analogous to that developed in the last section between
general B-series and general Dirichlet series; however in the present case
we shall obtain explicit formulae for relating the coefficients of the two
series. :
As in the preceding section, continued division of each term of the
ordinary B-series results in the double series
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8

(3) bon 1 3

barn—"" .,
]-..-(l1 ) nvn

n

Summing the terms of (3) according to increasing values of n™, n=
2,3,4,---; m=1,2,8, ---, we obtain an ordinary Dirichlet series

(4) b | S hk
l—a, &=

For a given k>1, b,a™n™" enters into the sum h,k~* if and only if
n™=k. Consequently the coefficient of k—* for k>1 will be

hk: 2 bna:tn ’
M=k
where the summation is taken over all n such that for some positive
integer m, n™=k.
The problem of convergence of (4) will be the same as that of (2).
Hence we have

THEOREM 6. An ordinary B-series

S ab,—T
1—a,n~*
can be expressed as an ordinary Dirichlet series ihklc"‘ where h,=
k=1
ab/(1—a,) and for k>1, h,= >, b,ay. In the region of absolute con-
vergence of the B-series im t;ze_khalf plane O the resulting Dirichlet

series converges. absolutely and represents the same analytic function
wm that region, provided the sequence {a,} ts bounded.

Before considering the converse problem, we shall introduce the
following modification of Doyle’s inversion function [1]. For positive
integers ¢ and m, the function S(¢, n) is defined recursively as follows:

S, n)=1, for all =
SV S(t, n)[a(n, v)]=0, for v>1
for each positive integer v such that n=s" for some positive integer s,

where 3 indicates that the summation is to be taken over all positive
integral divisors ¢t of v, and a(n, v)=av;

Suppose now that we are given an ordinary Dirichlet series f“ hpk*

k=1
and that we are to determine its ordinary B-series representation. Again
using the double array (8) as an intermediate step, we shall show that
the coefficients for n>1 are given by

(5) ' b,a,= 3, S(t, n)h, ,

st=n
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where for a fixed » the summation extends over all positive integers s
such that for some integer ¢, st=mn.

In (5) replace k, by its equivalent from Theorem 6; the right side
of (5) becomes

(6) > S(t, m) 2 b.ai .

st=n kd=s

For a fixed n>1, b,a, appears in this last expression if and only if for
some positive integers ¢t and d, mé=s and s‘=n. The total coefficient
of each such a,b, that does appear will be

3 8(t, m)atn, v)]-

so that (6) can be rewritten

S Wb ZS(t n)[a(n, v)]"10 .,

mV=n

By definition of the S function, this inner sum is zero unless v=1 when
it has the value one, in which case m=mn.

THEOREM 7. A given Dirichlet series i‘, h.k=* can be expressed as
k=1
a B-series of the form

>ab,—mr

1—a, n"
where ba,/(1—a)=h, and for n>1, b,a,= Z S, n)h,. In its region

of absolute convergence in the half plane D the resulting B-series
represents the same analytic function as does the given Dirichlet series,
provided the sequence {a,} ts bounded.

As with Theorem 4, convergence is verified by use of the double
series (3). This procedure does not yield a unique B-series, for only the
sequence {a,b,} is determined. If in a particular case one first chooses
{a,}, the above procedure determines the sequence {b,}; or because of
the recursive nature of S(¢, n), if {b,} is first chosen, the a, are uniquely
determined.

For example, if {(z) denotes the Riemann zeta function, then 1/(z)=
>\ u#(n)n~* has as its equivalent B-series, where b, is identically one,

e {S(r, n)y(m)}n"
14 3,
2= 1—{S(r, n)p(m)}n~
g2 8 4
142+ 1+48° 1+4-
where g denotes the Mobius function and for each n, m is the least
positive integer such that m"=mn for integral r.
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5. Natural boundaries of the B-series. This last section will
consider the existence of a natural boundary of the function represented
by an ordinary B-series. An interesting special case of the ordinary
B-series occurs when the sequence {a,} is determined as follows:

0, for n=1

a,= .
" |n*, for n>1, where k is some real constant.

There results

0 A

(M 2T

so that the natural boundary problem reduces to that of Kennedy’s R-
series [3]. Accordingly, the function represented by (7) will, under the
requisite restrictions on the sequence {b,} as determined by Kennedy, have
as a natural boundary the line R(z)=k.

For the general case of the ordinary B-series, we shall adopt the
method of Rust and Regan [4] to reduce the question of a natural
boundary to that of Kennedy’s R-series by expressing both as equivalent
Dirichlet series.

THEOREM 8. If the sequence {a,} is bounded, an ordinary B-series
oo n—-Z
g‘ "l—a,n*

can, in its region of absolute convergence in the half plane O, be
written as an ordinary R-series

Z‘zc’”lin
where

= % #0) 3 b
in which p denotes the Mobius function.

Proof. By Theorem 6, in its region of absolute convergence in the
half plane O, the series

o n-—z
>, a.b,

n=z l—a,n*

can be expressed as a Dirichlet series Z, hk=* where h,= >, b,ai. If

nV=k

é Ik = i( s bnaz)k-’

k=2 \pv=y
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be the series i b,n~* in Kennedy’s representation theorem [3; 448], then
n=2
at least formally

o

(8) ab—T = ( 5 bn%)k_z: 2‘20“ m*

w=2 nl—ann—’ =2 \ pop 1—m—*
where

Cn= kZ, n) > ban .
t=m nV=k
The proof of the convergence of the series on the right in (8) follows
as in the proof of Theorem 4.

We conclude therefore that if the sequence {a,} is bounded and if
the region of absolute convergence of the B-gseries in O includes those
values of z for which 0<R(z)<c¢ for some constant ¢, the problem of a
natural boundary at the axis of imaginaries for the function represented
by the ordinary B-series can be determined by means of the equivalent
R-series.
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