https://ntrs.nasa.gov/search.jsp?R=19870008260 2020-03-20T12:33:40+00:00Z

## NASA Technical Paper 2392

February 1985

Effects of Empennage Surface Location on Aerodynamic Characteristics of a Twin-Engine Afterbody Model With Nonaxisymmetric Nozzles

1. 19

Francis J. Capone and George T. Carson, Jr.



NASA

Date for general release . Bebruary 1987



# NASA Technical Paper 2392

1985

Effects of Empennage Surface Location on Aerodynamic Characteristics of a Twin-Engine Afterbody Model With Nonaxisymmetric Nozzles

Francis J. Capone and George T. Carson, Jr.

Langley Research Center Hampton, Virginia



and Space Administration

Scientific and Technical Information Branch

### Summary

The effects of empennage surface location and vertical tail cant angle on the aft-end aerodynamic characteristics of a twin-engine fighter-type configuration have been determined in an investigation conducted in the Langley 16-Foot Transonic Tunnel. The configuration featured two-dimensional convergent-divergent nozzles and twin vertical tails. The investigation was conducted at different empennage locations that included two horizontal and three vertical tail positions. Vertical tail cant angle was varied from  $-10^{\circ}$  to  $20^{\circ}$  for one selected configuration. Tests were conducted at Mach numbers from 0.60 to 1.20 and at angles of attack from  $-3^{\circ}$  to  $9^{\circ}$ . Nozzle pressure ratio was varied from jet off (1) to approximately 9, depending upon Mach number. An analysis of the results of this investigation was made at a tail deflection of  $0^{\circ}$ .

Tail interference effects were present throughout the test range of Mach numbers and were found to be either favorable or adverse, depending upon test condition and model configuration. At a Mach number of 0.90, adverse interference effects accounted for a significant percentage of total aft-end drag. Interference effects on the nozzle were generally favorable but became adverse as the horizontal tails were moved from a mid to an aft position. The effects of vertical tail position on aft-end drag were usually dependent on Mach number and configuration. Generally a forward position of the vertical tails produced the lowest total aft-end drag. The configuration with nonaxisymmetric nozzles had lower total aft-end drag with tails off than a similar configuration with axisymmetric nozzles at Mach numbers of 0.60 and 0.90. At a Mach number of 0.60, the nonaxisymmetric nozzle configuration had lower drag with tails-on than the axisymmetric nozzle configuration but unfavorable interference caused higher drag at a Mach number of 0.90. A decrease in total aft-end drag occurred as vertical tail cant angle was varied from  $-10^{\circ}$  to  $20^{\circ}$ .

### Introduction

The mission requirements for the next generation fighter aircraft may dictate a highly versatile vehicle capable of operating over a wide range of flight conditions. These aircraft will most likely be designed for high maneuverability and agility, will operate in a highly hostile environment, and will possess short take-off and landing characteristics to operate from bomb-damaged airfields. These aircraft require variable geometry nozzles to provide high internal nozzle performance; thus, important aft-end parameters such as closure and local boattail angles continuously change throughout the operating range of Mach number, angle of attack, and engine pressure ratios. Large drag penalties can result from integration of the propulsion system into the aircraft because of adverse interactions originating from empennage surfaces, base areas, actuator fairings, and tail booms (refs. 1 to 5).

A comprehensive program to study the interference effects of empennage surfaces on single- and twin-engine fighter afterbody/nozzle drag has been conducted at the Langley Research Center (refs. 6 to 11) because these interference effects can account for a major portion of total aft-end drag. These studies, which are summarized in references 12 and 13, were conducted with configurations with conventional axisymmetric nozzles. Little information is currently available on empennage effects on configurations with advanced nozzle concepts.

This paper presents results from an investigation of the effects of horizontal and vertical tail position on twin-engine fighter aft-end drag with a model which had nonaxisymmetric (two-dimensional convergent-divergent) nozzles. This exhaust system has the potential to satisfy many different mission requirements with less installation penalties than axisymmetric nozzles (refs. 14 to 16). The present study was part of an overall research program that also determined nonaxisymmetric nozzle thrust reverser performance (ref. 17) and effects of thrust reversing on horizontal tail effectiveness (ref. 18). This investigation was conducted in the Langley 16-Foot Transonic Tunnel at Mach numbers from 0.60 to 1.20, at angles of attack from  $-3^{\circ}$  to  $9^{\circ}$ , and at nozzle pressure ratios up to 9. Horizontal tail incidence angle was varied from 0° to -10°.

### Symbols

Model forces and moments are referred to the stability axis system with the model moment reference center located 4.45 cm above the model centerline at fuselage station 91.6 cm, which corresponds to  $0.25\bar{c}$ . All coefficients are nondimensionalized with respect to  $q_{\infty}S$ or  $q_{\infty}S\bar{c}$ . A discussion of the data reduction procedure and definitions of the aerodynamic force and moment terms and the propulsion relationships used herein are presented in the appendix. The symbols used in the computer-generated tables are given in parentheses in the second column.

| $A_{mb,1}$       | model cross-sectional<br>area at FS 113.67 and<br>FS 122.56, cm <sup>2</sup>            |
|------------------|-----------------------------------------------------------------------------------------|
| $A_{mb,2}$       | model cross-sectional area at FS 168.28, $cm^2$                                         |
| $A_{\rm seal,1}$ | cross-sectional area<br>enclosed by seal strip<br>at FS 113.67 and<br>FS 122.56, $cm^2$ |

| $A_{ m seal,2}$                |          | cross-sectional area enclosed by seal strip at FS 168.28, $cm^2$                                        | $C_m$                 | (CM)    | total aft-end aerody-<br>namic pitching-moment<br>coefficient      |
|--------------------------------|----------|---------------------------------------------------------------------------------------------------------|-----------------------|---------|--------------------------------------------------------------------|
| $C_D$                          | (CD)     | total aft-end drag<br>coefficient                                                                       | $C_{m,\mathrm{aft}}$  | (CMAFT) | afterbody (plus tails)<br>pitching-moment<br>coefficient           |
| $C_{D,\mathrm{aft}}$           | (CDAFT)  | afterbody (plus tails) drag<br>coefficient                                                              | $C_{m,n}$             | (CMN)   | nozzle pitching-moment<br>coefficient                              |
| $C_{D,n}$                      | (CDN)    | nozzle drag coefficient                                                                                 | C .                   | (CMT)   | total aft-end pitching-                                            |
| $C_{D,\mathrm{tails}}$         |          | tail drag coefficient                                                                                   | $O_{m,t}$             | (0.001) | moment coefficient (in-                                            |
| $C_{(D-F)}$                    | (C(D-F)) | drag-minus-thrust coeffi-<br>cient, $C_{(D-F)} \equiv C_D$ at<br>NPR = 1 (jet off)                      |                       |         | cluding thrust compo-<br>nent), $C_{m,t} \equiv C_m$ at<br>NPR = 1 |
| $C_{D,o}$                      |          | $C_D$ at $C_L = 0$                                                                                      | ō                     |         | wing mean geometric<br>chord, 44.42 cm                             |
| $\Delta U_{D,ia}$              |          | nage interference drag                                                                                  | $D_f$                 |         | friction drag, N                                                   |
|                                |          | coefficient on afterbody<br>(eq. (A13))                                                                 | $F_A$                 |         | total aft-end axial force, N                                       |
| $\Delta C_{D,in}$              |          | increment in empennage<br>interference drag coeffi-                                                     | $F_{A,\mathrm{Mbal}}$ |         | axial force measured by main balance, N                            |
|                                |          | cient on nozzle (eq. (A12))                                                                             | $F_{A,\mathrm{mom}}$  |         | momentum tare axial force<br>due to bellows, N                     |
| <b>L</b> C <i>D</i> , <i>n</i> |          | interference drag coef-<br>ficient on total aft end                                                     | $F_{A,\mathrm{Sbal}}$ |         | axial force measured by<br>afterbody shell balance, N              |
| $(\Delta C_{D,ia})_o$          |          | (eq. (AII))<br>increment in empennage                                                                   | $F_{\mathrm{aft}}$    |         | afterbody (plus tails) axial<br>force, N                           |
|                                |          | ficient on afterbody at $C_L = 0$                                                                       | $F_i$                 |         | ideal isentropic gross<br>thrust                                   |
| $(\Delta C_{D,in})_o$          |          | increment in empennage                                                                                  | $F_{j}$               |         | thrust along body axis, N                                          |
|                                |          | interference drag coeffi-<br>cient on nozzle at $C_L = 0$                                               | Μ                     | (MACH)  | free-stream Mach number                                            |
| $(\Delta C_{D,it})_o$          |          | increment in empennage                                                                                  | NPR                   |         | nozzle pressure ratio, $p_{t,j}/p_\infty$                          |
|                                |          | cient on total aft end at $C_L = 0$                                                                     | 'n                    |         | measured mass-flow rate,<br>kg/sec                                 |
| $C_{F,i}$                      |          | ideal isentropic gross<br>thrust coefficient                                                            | $\dot{m}_i$           |         | ideal mass-flow rate,<br>kg/sec                                    |
| $C_L$                          | (CL)     | total aft-end aerodynamic<br>lift coefficient                                                           | $ar{p}_{es,1}$        |         | average static pres-<br>sure at external seal at                   |
| $C_{L,\mathrm{aft}}$           | (CLAFT)  | afterbody (plus tails) lift<br>coefficient                                                              | ñ.,, )                |         | FS 113.67, Pa<br>average static pres-                              |
| $C_{L,n}$                      | (CLN)    | nozzle lift coefficient                                                                                 | F 53,4                |         | sure at external seal at                                           |
| $C_{L,t}$                      | (CLT)    | total aft-end lift coefficient<br>(including thrust com-<br>ponent), $C_{L,t} \equiv C_L$ at<br>NPR = 1 | $ar{p}_{es,3}$        |         | average static pres-<br>sure at external seal at<br>FS 168.28, Pa  |

|

1

I

| $ar{p_i}$      |         | average internal static<br>pressure, Pa                                                         |
|----------------|---------|-------------------------------------------------------------------------------------------------|
| $p_{t,j}$      |         | average jet total pressure,<br>Pa                                                               |
| $p_{\infty}$   |         | free-stream static pressure,<br>Pa                                                              |
| $q_\infty$     |         | free-stream dynamic<br>pressure, Pa                                                             |
| S              |         | wing reference area,<br>4290.00 cm <sup>2</sup>                                                 |
| R              |         | gas constant, 287.3 J/kg-K                                                                      |
| t/c            |         | thickness-chord ratio                                                                           |
| $T_{t,j}$      |         | jet total temperature, K                                                                        |
| α              | (ALPHA) | angle of attack, deg                                                                            |
| $\gamma$       |         | ratio of specific heats,<br>1.3997 for air at 300 K                                             |
| $\delta_h$     |         | horizontal tail deflection,<br>positive leading edge up,<br>deg                                 |
| $\Lambda_{le}$ |         | leading-edge sweep angle,<br>deg                                                                |
| $\phi_{\iota}$ |         | vertical tail cant angle,<br>positive tip out, deg                                              |
| Abbreviatio    | ns:     |                                                                                                 |
| ASME           |         | American Society of<br>Mechanical Engineers                                                     |
| BL             |         | buttock line, cm                                                                                |
| FS             |         | fuselage station (axial<br>location described by<br>distance in centimeters<br>from model nose) |
| Fwd            |         | forward                                                                                         |
| НТ             |         | horizontal tails                                                                                |
| VT             |         | vertical tails                                                                                  |
| WL             |         | water line, cm                                                                                  |
|                |         |                                                                                                 |

### **Apparatus and Procedure**

### Wind Tunnel

This investigation was conducted in the Langley 16-Foot Transonic Tunnel, a single-return atmospheric wind tunnel with a slotted octagonal test section and continuous air exchange. The wind tunnel has continuously variable airspeed up to a Mach number of 1.30. Test-section plenum suction is used for speeds above a Mach number of 1.05. A complete description of this facility and operating characteristics can be found in reference 19.

### Model and Support System

Details of the general research, twin-engine fighter afterbody model and wing-tip-mounted support system used in this investigation are presented in figure 1. Photographs of the model and support system installed in the Langley 16-Foot Transonic Tunnel are shown in figure 2. A sketch of the wing planform geometry is presented in figure 3.

The wing-tip model support system shown in figure 1 consisted of three major portions: the twin support booms, the forebody (nose), and the wingcenterbody combination. These pieces made up the nonmetric portion (that portion of the model not mounted on the force balance) of the twin-engine fighter model. The fuselage centerbody was essentially rectangular in cross section having a constant width and height of 25.40 cm and 12.70 cm, respectively. The four corners were rounded by a radius of 2.54 cm. Maximum cross-sectional area of the centerbody (fuselage) was  $317.04 \text{ cm}^2$ . The support system forebody (or nose) was typical of a powered model in that the inlets were faired over. For these tests, the wings were mounted above the model centerline (model has capability for both high or low wing mount). The wing had a  $45^{\circ}$ leading-edge sweep, a taper ratio of 0.5, an aspect ratio of 2.4, and a cranked trailing edge (fig. 3). The NACA 64-series airfoil had a thickness ratio of 0.067 near the wing root to provide a realistic wake on the afterbody. From BL 27.94 outboard to the support booms, however, wing thickness ratio increased from 0.077 to 0.10 to provide adequate structural support for the model and to permit transfer of compressed air from the booms to the model propulsion system.

The metric portion of the model aft of FS 113.67, supported by the main force balance, consisted of the internal propulsion system, afterbody, tails (not shown in fig. 1), and nozzles. The afterbody lines (boattail) were chosen to provide a length of constant cross section aft of the nonmetric centerbody and to enclose the force balance and jet simulation system while fairing smoothly downstream into the closely spaced nozzles. The afterbody shell from FS 122.56 to FS 168.28 and tail surfaces (when installed) were attached to an afterbody force balance which was attached to the main force balance (fig. 1). The main force balance in turn was grounded to the nonmetric wing-centerbody section. The nozzles were attached directly to the main force balance through the propulsion system piping. Three clearance gaps (metric breaks) were provided between the nonmetric and the individual metric portions (afterbody and nozzles) of the model at FS 113.67, FS 122.56, and FS 168.28, to prevent fouling of the components upon each other. A flexible plastic strip inserted into circumferentially machined grooves in each component impeded flow into or out of the internal model cavity (fig. 1).

In this report, that section of the model aft of FS 122.56 is referred to as the total aft end (includes afterbody, tails when installed, and nozzles). That section of the model from FS 122.56 to FS 168.28 is referred to as the afterbody, and that section aft of FS 168.28 is considered the nozzles. A skin-friction drag adjustment to the axial force results of the main balance was made for the section of the model from FS 113.67 to FS 122.56. (See appendix.)

The afterbody had provisions for mounting both the twin vertical tails and horizontal tails in three axial positions. The vertical tails at a cant angle of  $0^{\circ}$ , were tested in three positions—forward, mid, and aft as shown in figure 4. With the vertical tails in the mid position, cant angles of  $-10^{\circ}$ ,  $10^{\circ}$ , and  $20^{\circ}$  were also tested. The horizontal tails were only tested in the mid and aft positions which are about at the same positions as those of references 9 to 12. Note that both the vertical and horizontal tails have smaller tail spans when installed in the aft position than when they are installed in the other positions.

Sketches of the horizontal and vertical tails are presented in figures 5 and 6, respectively. These tail surfaces were sized to be representative of current twinengine fighter aircraft. Individual root fairings (fillers) contoured the tails to the afterbody at each tail position. Clearance gaps were provided between the nozzles and horizontal and vertical tails (aft position) in order to prevent fouling between the main and afterbody balances (fig. 4). These tail surfaces (without fairings) were also used in the investigations of references 9 to 11.

#### **Twin-Jet Propulsion Simulation System**

The twin-jet propulsion simulation system is shown in figure 1. An external high-pressure air system provides a continuous flow of clean, dry air at a controlled temperature of about 306 K at the nozzles. This highpressure air is brought into the wind-tunnel main support strut where it is divided into two separate flows and passed through remotely operated flow-control valves. These valves are used to balance the total pressure in each nozzle.

The divided compressed airflows are piped through the wing-tip support booms, through the wings, and into the flow-transfer bellows assemblies (fig. 1). A sketch of a single flow-transfer bellows assembly is shown in figure 7. The air in each supply pipe is discharged perpendicularly to the model axis through eight sonic nozzles equally spaced around the supply pipe. This method is designed to eliminate any transfer of axial momentum as the air is passed from the nonmetric to the metric portion of the model. Two flexible metal bellows are used as seals and serve to compensate the axial forces caused by pressurization. The cavity between the supply pipe and bellows is vented to model internal pressure. The airflow is then passed through the tailpipes into the transition sections and then to the exhaust nozzles. (See fig. 1.)

The nonaxisymmetric (two-dimensional convergentdivergent) nozzle used in this investigation is shown in figure 8. The nozzle simulated a dry-power or cruise operating mode with a design NPR of about 3.5. The nozzle throat area  $(17.48 \text{ cm}^2)$  and expansion ratio (1.15) were sized to be consistent with advanced mixed flow turbofan cycles. The ratio of total throat area to maximum body cross-sectional area was 0.11, and the nozzle throat aspect ratio was 3.45. This nozzle was one of a series of nozzles tested in the study reported in reference 20. Nozzle static performance, ideal thrust coefficients, and scheduled pressure ratios are presented in figure 9.

#### Instrumentation

Forces and moments on the metric portions of the model were measured by two six-component straingauge balances. The main balance measured forces and moments resulting from nozzle gross thrust and the external flow field over that portion of the model aft of FS 113.67. The tandem afterbody shell balance measured forces and moments resulting from the external flow field over the afterbody and empennage surfaces from FS 122.56 to FS 168.28. The tandem balance arrangement permits the separation of model component forces for data analysis.

Eight external seal static pressures were measured in the seal gap at the first metric break (FS 113.67). All orifices were located on the nonmetric centerbody and spaced symmetrically about the model perimeter. An additional five orifices, positioned symmetrically about the right side of the model measured seal gap pressures at the second metric break (FS 122.56). The final seal pressures were measured by two sets of surface taps, both consisting of two orifices, each an equal distance fore and aft of the third metric break (FS 168.28). In addition to these external pressures, two internal pressures were measured at each metric seal. These pressure measurements were then used to correct measured axial force and pitching moment for pressure-area tares as discussed in the appendix.

Chamber pressure and temperature measurements taken in the supply pipe, upstream of the eight sonic nozzles (fig. 7), were used to compute mass-flow rates for each nozzle. Instrumentation in each charging section consisted of a stagnation-temperature probe and a total-pressure rake. Each rake contained four totalpressure probes. (See fig. 8.)

All pressures were measured with individual pressure transducers. Data obtained during each tunnel run were recorded on magnetic tape and reduced with standard data reduction procedures. Typically, for each data point, 50 samples of data were recorded over a period of 5 sec and the average was used for computational purposes.

#### Tests

This investigation was conducted in the Langley 16-Foot Transonic Tunnel at Mach numbers from 0.60 to 1.20 and at angles of attack from  $-3^{\circ}$  to  $9^{\circ}$ . Nozzle pressure ratio varied from 1 (jet off) to 9, depending upon Mach number. Basic data were obtained by varying nozzle pressure ratio at zero angle of attack and by varying angle of attack at fixed nozzle pressure ratios. The investigation was conducted with different empennage locations that included two horizontal and three vertical tail positions. Vertical tail cant angle was varied from  $-10^{\circ}$  to  $20^{\circ}$  for one selected configuration. Horizontal tail incidence was varied for selected configurations from  $0^{\circ}$  to  $-10^{\circ}$ . Reynolds number based on the wing mean geometric chord varied from  $4.4 \times 10^{6}$  to  $5.28 \times 10^{6}$ .

All tests were conducted with 0.26-cm-wide boundary-layer transition strips consisting of No. 120 silicon carbide grit sparsely distributed in a thin film of lacquer. These strips were located 2.54 cm from the tip of the forebody nose and on both upper and lower surfaces of the wings and empennage at 5 percent of the root chord to 10 percent of the tip chord.

### **Presentation of Results**

The results of this investigation are presented in both tabular and plotted form. Table 1 is an index to the tabular results contained in tables 2 to 17. The computer symbols appearing in these tables are defined in the section "Symbols" with their corresponding mathematical symbols which are described in the appendix. Plotted data are presented only at  $\delta_h = 0^\circ$  because subsequent analysis cannot be made at a constant lift coefficient. Because this investigation was conducted with a partially metric model, data were obtained at essentially three different ranges of lift coefficient as tail deflection was varied from  $0^\circ$  to  $-10^\circ$ . Basic and summary data for selected conditions at  $\delta_h = 0^\circ$  are presented in figures 10 to 22 as follows:

Figure

Variation of aft-end aerodynamics at  $\alpha = 0^{\circ}$ with NPR for— Horizontal tails mid, variable vertical tail position,

and  $\phi_t = 0^\circ$  . . . . . . . . . . . . . . . . . 10

| Horizontal tails aft, variable vertical tail position,     |     |
|------------------------------------------------------------|-----|
| and $\phi_t = 0^\circ$                                     | 11  |
| Horizontal tails aft, vertical tails mid, and variable     | le  |
| $\phi_t$                                                   | 12  |
| Variation of total aft-end aerodynamics with $\alpha$ for- |     |
| Horizontal tails mid, variable vertical tail position      | ı,  |
| and $\phi_t = 0^\circ$                                     | 13  |
| Horizontal tails aft, variable vertical tail position,     |     |
| and $\phi_t = 0^\circ$                                     | 14  |
| Horizontal tails aft, vertical tails mid, and variabl      | e   |
| $\phi_t$                                                   | 15  |
| Summary data:                                              |     |
| Total aft-end drag, $C_L = 0$ , and                        |     |
| empennage location                                         | 16  |
| Interference drag terms, $C_L = 0$ , and                   |     |
| empennage location                                         | 17  |
| Interference drag terms, $\alpha = 0^{\circ}$ ,            |     |
| and horizontal tails mid                                   | 18  |
| Interferience drag terms, $\alpha = 0^{\circ}$ ,           |     |
| and horizontal tails aft                                   | 19  |
| Comparison with axisymmetric nozzle                        | •   |
| configurations with $\alpha = 0^{\circ}$                   | 20  |
| Total aft-end drag, $C_L = 0$ , and vertical               | ~ ~ |
| $tail cant angle \ldots \ldots \ldots \ldots \ldots$       | 21  |
| Interference drag terms, $\alpha = 0^{\circ}$ ,            | ~~  |
| and vertical tail cant angle                               | 22  |
|                                                            |     |

### Discussion

### **Basic Data**

The basic data obtained during this investigation are presented in figures 10 to 15 for the various configurations tested at  $\delta_h = 0^\circ$  only. Two types of data presentation are made to illustrate the effects of nozzle pressure ratio and angle of attack. First, the variation of total aft end, afterbody, and nozzle aerodynamic drag and lift coefficients with nozzle pressure ratio at  $\alpha = 0^{\circ}$ is presented in figures 10 to 12. Second, the variation of total aft-end aerodynamic lift and drag coefficients with angle of attack is presented in figures 13 to 15 at jet-off conditions and at a scheduled pressure ratio for each Mach number (fig. 9(c)). Test parameters not shown in plotted form, such as total aft-end pitching-moment coefficient, or obtained on configurations investigated at tail deflections other than  $0^{\circ}$  have been tabulated (tables 2 to 17).

In general, the variation of total aft-end drag coefficient  $C_D$  with nozzle pressure ratio for any particular configuration (figs. 10 to 12), follows expected trends (e.g., see refs. 6 and 9). Total aft-end drag decreases with initial jet operation up to nozzle pressure ratios of 2 to 3. This decrease in total aft-end drag is primarily a result of a decrease in drag on the nozzles particularly at M = 0.60 and 1.20. This decrease in nozzle drag is caused by a reduction in the external flow expansion required at the nozzle exit as the exhaust flow fills the nozzle base region. As nozzle pressure ratio is further increased, there is an increase in nozzle drag and, hence, total aft-end drag. Except at M = 0.60, nozzle drag subsequently decreases again with additional increases in NPR. The change in drag trend with increasing NPR (generally a drag increase) at NPR above 2 to 3 is probably caused by exhaust flow entrainment effects on the external nozzle flow, whereas the drag decreases at the higher nozzle pressure ratios (NPR > 3) are caused by a compression at the nozzle exit created by the increased thickness of the exhaust flow plume. These trends with increasing nozzle pressure ratio are typical for jet-powered models (ref. 6).

The effects of angle of attack on total aft-end aerodynamic characteristics shown in figures 13 to 15 are also typical for partially metric afterbody propulsion models. A single break occurs in the lift curves at  $\alpha \approx 3^{\circ}$  at M = 0.60, whereas at M = 1.20, there are breaks at  $\alpha = 0^{\circ}$  and  $3^{\circ}$ . At M = 0.90, the lift curves are nonlinear. Total aft-end drag polars also exhibit characteristics that are typical for afterbody propulsion models. A typical shape of the drag at M = 0.90probably results from changes in the wing downwash on the afterbody and empennage surfaces in the transonic range.

#### Effect of Empennage Location

The effects of twin vertical tail longitudinal position on total aft-end zero-lift drag coefficients and individual zero-lift interference drag increments are presented in figures 16 and 17, respectively, for the two horizontal tail positions investigated. These values were determined by interpolation at  $C_L = 0$  from data obtained as angle of attack was varied at constant nozzle pressure ratio (fig. 13(b), typical). These nozzle pressure ratios correspond to the schedule shown in figure 9(c). In addition, the effect of nozzle pressure ratio on individual interference drag coefficients at  $\alpha = 0^{\circ}$  is shown in figures 18 and 19 for the various configurations tested. Note that these interference drag data are at  $\alpha = 0^{\circ}$ (because of the method used to obtain data) rather than  $C_L = 0$ ; thus, absolute levels may differ from those presented in figure 17.

Horizontal tails mid. There are no definite trends to total aft-end zero lift drag  $C_{D,o}$  as the vertical tails are moved from the forward to the mid position (fig. 16) for the test Mach numbers. The lowest value of  $C_{D,o}$ was measured for this investigation at M = 0.60 and NPR = 3.5 with all tail surfaces in the mid position (fig. 16). The lowest jet-off (NPR = 1) value of  $C_{D,o}$ also occurred for this configuration (fig. 13(a)). The trends of zero-lift total aft-end empennage interference drag coefficient (fig. 17) are the same as for  $C_{D,o}$  as vertical tail position is varied for the test Mach numbers. Note that  $(\Delta C_{D,it})_o$  is negative at M = 0.60 and 1.20; this indicates favorable interference. At M = 0.60, this favorable interference is due to the tails-on nozzle drag being lower than the tails-off nozzle drag. At this Mach number, favorable interference is a result of favorable interference on the nozzles. However, the favorable interference effects on the total aft end at M = 1.20 are caused from favorable interference on the afterbody and not the nozzles (fig. 17). Similar results at M = 1.20 were found in reference 9.

At M = 0.90, favorable interference on the nozzles also occurred. However, the favorable interference effects on the nozzles are negated by adverse interference now present on the afterbody (fig. 17), which is greatly aggravated as the vertical tails are moved from the forward to the mid position. With the vertical tails in the mid position, afterbody interference drag is 57 percent and total aft-end interference drag is 47 percent of the total aft-end zero-lift drag  $C_{D,o}$ . As the vertical tails are moved from the forward to mid location at M = 0.60 and 0.90, there is a decrease in nozzle drag (fig. 10) and a favorable increase (more negative) in nozzle interference drag increment. This trend is similar to that obtained previously on a single-engine configuration (ref. 6) but opposite to that obtained on a twin-engine configuration (ref. 9). Both of these studies utilized models with axisymmetric nozzles.

Horizontal tails aft. As shown in figure 16, a large increase in total aft-end zero-lift drag occurs subsonically as the vertical tails are moved from the forward to mid position. Further movement of the vertical tails to the aft position then results in a decrease in  $C_{D,o}$ . A similar trend was observed at M = 1.20, but the changes in  $C_{D,o}$  are small. With the horizontal tails aft, the configuration with the vertical tails forward produced the lowest total aft-end drag at all Mach numbers. In general, configurations with staggered tail arrangements (vertical tails forward, horizontal tails aft) have been found to have lower total aft-end drag for both single- and twin-engine configurations (refs. 6 and 9).

Examination of zero-lift individual interference drag increments shows a large effect of moving the horizontal tail from the mid to aft position (fig. 17). With the horizontal tails in the aft position, the increment in empennage interference drag coefficient on the nozzle is always unfavorable, even though nozzle drag coefficient is still negative at M = 0.60 and 0.90 (fig. 11). This probably indicates a reduction in pressure recovery on the nozzles or flow separation on the nozzle sidewalls when the horizontal tails are located adjacent to the nozzles. As the vertical tails are moved from the forward to the aft position, there is an increase in empennage interference drag on the nozzle (except at M = 0.6 with vertical tails aft) and an increase in nozzle drag (fig. 11). This trend is opposite to the one noted with the horizontal tails mid and is the same as that reported in reference 9.

At M = 0.9, there is a sharp increase in both the total and afterbody empennage interference drag terms (fig. 17) as the vertical tails are moved from the forward to mid position. Similar results were also found with the horizontal tails in the mid position. Although the reasons for this behavior are not known, one possible explanation is that the adverse interference is a result of the vertical tails being misaligned with the local flow field of the wing/forebody at the mid position. Reference 10 indicates that total aft-end drag was extremely sensitive to vertical tail toe angle. The vertical tail toe angle was  $0^{\circ}$  for the present investigation.

At lifting conditions (figs. 13 and 14), the configuration with the vertical tails forward generally had the lowest jet-on drag coefficient throughout the Mach number and angle-of-attack ranges except at M = 0.60. At this Mach number, the configuration with the vertical and horizontal tails mid had the lowest drag over the angle-of-attack range.

**Comparison with other data.** A comparison of the total aft-end drag coefficient at  $\alpha = 0^{\circ}$  of the present study with that of the configuration of reference 9 is made in figure 20. Both of these configurations were identical up to FS 122.56 and used the same tail surfaces. The afterbody (FS 122.56 to FS 168.28) of reference 9 was designed to have axisymmetric nozzles installed at FS 168.28. Since the nozzles of both these investigations had the same nozzle throat areas and expansion ratios, the afterbody closure ratios (ratio of twice throat area to maximum body cross-sectional area) were the same.

In order to make the comparisons between the two configurations, it is first necessary to discuss the total aft-end drag characteristics of both configurations without tails. Additional drag differences between the two configurations are caused by tail interference effects since the drag of the tails is essentially the same. Tails-off total aft-end drag coefficients at  $\alpha = 0^{\circ}$  are presented in the table on this page. As can be seen, the nonaxisymmetric nozzle configuration of the present study has lower drag at M = 0.60 and 0.90 because of the nozzle installation. The higher drag at M = 1.20 is attributed to poor cross-sectional area distribution characteristics.

As seen in figure 20, the present configuration always had lower total aft-end drag than that of reference 9 for all the combinations of empennage surfaces tested at

|      | Drag from | n present | Drag      | from     |
|------|-----------|-----------|-----------|----------|
|      | study     | for—      | reference | e 9 for— |
|      |           | Schedule  |           | Schedule |
| М    | Jet off   | NPR       | Jet off   | NPR      |
| 0.60 | 0.0039    | 0.0035    | 0.0050    | 0.0041   |
| .90  | .0032     | .0028     | .0040     | .0030    |
| 1.20 | .0166     | .0158     | .0150     | .0122    |

M = 0.60. However, at M = 0.90 and M = 1.20, the configurations of the present study nearly always had higher drag than that of reference 9 because of unfavorable tail interference effects. In general, the trends in  $C_D$  with vertical tail movement are similar to that of reference 9.

### Effect of Vertical Tail Cant Angle

The effects of vertical tail cant angle on total aft-end zero-lift drag coefficient and increments in empennage interference drag coefficient at  $\alpha = 0^{\circ}$  are presented in figures 21 and 22. As can be seen, increasing tail cant angle from  $-10^{\circ}$  to  $20^{\circ}$  reduced total aft-end zero-lift drag coefficient and, in general, reduced each of the drag interference terms over the test Mach number range. Figure 15 also shows that reductions in drag coefficient from increasing tail cant angle also occur over the test angle-of-attack range. Similar results were obtained in reference 10.

### Conclusions

An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of empennage surface location and vertical tail cant angle on the aft-end aerodynamic characteristics of a twinengine fighter-type configuration. The configuration featured two-dimensional convergent-divergent nozzles and twin vertical tails. The investigation was conducted at different empennage locations that included two horizontal and three vertical tail positions. Vertical tail cant angle was varied from  $-10^{\circ}$  to  $20^{\circ}$  for one selected configuration. Tests were conducted at Mach numbers from 0.60 to 1.20 over an angle-of-attack range from  $-3^{\circ}$  to  $9^{\circ}$ . Nozzle pressure ratio was varied from jet off (1) to approximately 9, depending upon Mach number. An analysis of the results of this investigation at a tail deflection of  $0^{\circ}$  indicates the following conclusions:

1. Tail interference effects were present throughout the test range of Mach numbers and were found to be either favorable or adverse, depending upon test condition and model configuration. At Mach number of 0.90, adverse interference effects accounted for a significant percentage of total aft-end drag. 2. Interference effects on the nozzle were generally favorable but became adverse as the horizontal tails were moved from a mid to an aft position.

3. The effects of vertical tail position on aft-end drag were usually dependent on Mach number and configuration. Generally, a forward position of the vertical tails produced the lowest total aft-end drag.

4. The configuration with nonaxisymmetric nozzles had lower total aft-end drag with tails off than a similar configuration with axisymmetric nozzles at Mach numbers of 0.60 and 0.90.

5. At a Mach number of 0.60, the nonaxisymmetric nozzle configuration had lower drag with tails on than

the axisymmetric nozzle configuration but unfavorable interference caused higher drag at a Mach number of 0.90.

6. A decrease in total aft-end drag occurred as vertical tail cant angle was varied from  $-10^{\circ}$  to  $20^{\circ}$ .

Langley Research Center National Aeronautics and Space Administration Hampton, VA 23665 October 3, 1984

### Appendix

### **Data Reduction and Calibration Procedure**

### **Calibration Procedure**

The main balance measured the combined forces and moments due to nozzle gross thrust and the external flow field of that portion of the model aft of FS 113.67. The tandem shell balance measured forces and moments due to the external flow field exerted over the afterbody and tails between FS 122.56 and FS 168.28.

Force and moment interactions exist between the flow-transfer bellows system (fig. 7) and the main force balance because the centerline of this balance was below the jet centerline (fig. 1). Consequently, single and combined loadings of normal and axial force and pitching moment were made with and without the jets operating with ASME calibration nozzles. These calibrations were performed with the jets operating because this condition gives a more realistic effect of pressurizing the bellows than capping the nozzles and pressurizing the flow system. Thus, in addition to the usual balanceinteraction corrections applied for a single force balance under combined loads, another set of interactions were made to the data from this investigation to account for the combined loading effect of the main balance with the bellows system. These calibrations were performed over a range of expected normal forces and pitching moments. Note that this procedure is not necessary for the afterbody forces because the flow system is not bridged by the tandem shell balance.

### Data Adjustments

In order to achieve desired axial-force terms, the axial forces measured by both force balances must also be corrected for pressure-area tare forces acting on the model and the main balance corrected for momentum tare forces caused by flow in the bellows. The external seal and internal pressure forces on the model were obtained by multiplying the difference between the average pressure (external seal or internal pressures) and free-stream static pressure by the affected projected area normal to model axis. The momentum tare force was determined from calibrations with the ASME nozzle prior to the wind-tunnel investigation.

Axial force minus thrust was computed from the main balance axial force with the following relationship:

$$F_{A} - F_{j} = F_{A,\text{Mbal}} + (\bar{p}_{es,1} - p_{\infty})(A_{mb,1} - A_{\text{seal},1}) + (\bar{p}_{i} - p_{\infty})A_{\text{seal},1} - F_{A,\text{mom}} + D_{f}$$
(A1)

where  $F_{A,\text{Mbal}}$  includes all pressure and viscous forces, internal and external, on both the afterbody and thrust system. The second and third terms account for the forward seal rim and interior pressure forces, respectively. In terms of an axial-force coefficient, the second term ranges from -0.0001 to -0.0007 and the third term varies  $\pm 0.0075$ , depending upon Mach number and pressure ratio. The internal pressure at any given set of test conditions was uniform throughout the inside of the model; thus, no cavity flow was indicated. The momentum tare force  $F_{A,mom}$  is a momentum tare correction with jets operating and is a function of the average bellows internal pressure that is a function of the internal chamber pressure in the supply pipes just ahead of the sonic nozzles (fig. 7). Although the bellows were designed to minimize momentum and pressurization tares, small bellows tares still exist with the jet on. These tares result from small pressure differences between the ends of the bellows when internal velocities are high and also from small differences in the forward and aft bellows spring constants when the bellows are pressurized. The last term  $D_f$  (eq. (A1)) is the friction drag of the section from FS 113.67 to FS 122.68. A friction drag coefficient of 0.0004 was applied at all Mach numbers.

Afterbody axial force is computed from a similar relationship as follows:

$$F_{aft} = F_{A,Sbal} + (\bar{p}_{es,2} - p_{\infty})(A_{mb,1} - A_{seal,1}) + (\bar{p}_i - p_{\infty})A_{seal,2} + (\bar{p}_{es,3} - p_{\infty})(A_{mb,2} - A_{seal,2})$$
(A2)

Since both balances are offset from the model centerline, similar adjustments are made to the pitching moments measured by both balances. These adjustments are necessary because both the pressure area and bellows momentum tare forces are assumed to act along the model centerline. The pitching-moment tare is determined by multiplying the tare force by the appropriate moment arm and subtracting the value from the measured pitching moments.

### Model Attitude

The adjusted forces and moments measured by both balances were transferred from the body axis (which lies in the horizontal tail chord plane) of the metric portion of the model to the stability axis. Attitude of the nonmetric forebody relative to gravity was determined from a calibrated attitude indicator located in the model nose. Angle of attack  $\alpha$ , which is the angle between the afterbody centerline and the relative wind, was determined by applying terms for afterbody deflection, caused when the model and balance bent under aerodynamic load, and by a flow angularity term to the angle measured by the attitude indicator. The flow angularity adjustment was 0.1°, which is the average angle measured in the Langley 16-Foot Transonic Tunnel.

### **Ideal Thrust**

The ideal isentropic gross thrust of each nozzle can also be determined if the mass-flow rate for each nozzle is known. The effective discharge coefficients of the eight sonic nozzles (fig. 7) forward of each of the nozzle tail pipes were determined and used for measuring mass flow.

The total ideal isentropic gross thrust or exhaust jet momentum for both nozzles is

$$F_{i} = \dot{m} \sqrt{RT_{t,j} \frac{2\gamma}{\gamma - 1} \left[ 1 - \left(\frac{p_{\infty}}{p_{t,j}}\right)^{\frac{\gamma - 1}{\gamma}} \right]}$$
(A3)

where  $\dot{m}$  is the mass-flow rate measured in the flowtransfer assemblies and  $p_{t,j}$  is the average jet stagnation pressure for both nozzles.

### **Thrust-Removed Characteristics**

The resulting force and moment coefficients (including thrust components) from the main balance include total lift coefficient  $C_{L,t}$ , drag-minus-thrust coefficient  $C_{(D-F)}$ , and total pitching-moment coefficient  $C_{m,t}$ . Force and moment coefficients from the tandem shell balance are afterbody (plus tails) lift coefficient  $C_{L,aft}$ , afterbody drag coefficient  $C_{D,aft}$ , and afterbody pitching-moment coefficient  $C_{m,aft}$ .

Thrust-removed aerodynamic force and moment coefficients for the entire model were obtained by determining the components of thrust in axial force, normal force, and pitching moment and subtracting these values from the measured total (aerodynamic plus thrust) forces and moments. These thrust components at forward speeds were determined from measured static data and were a function of the free-stream static and dynamic pressure. Thrust-removed aerodynamic coefficients are

 $C_L = C_{L,t}$  – Jet lift coefficient (A4)

$$C_D = C_{(D-F)} + \text{Thrust coefficient}$$
 (A5)

 $C_m = C_{m,t}$  - Jet pitching moment coefficient (A6)

Nozzle coefficients are obtained by simply combining the measured results from both force balances as follows:

$$C_{L,n} = C_L - C_{L,\text{aft}} \tag{A7}$$

$$C_{D,n} = C_D - C_{D,\text{aft}} \tag{A8}$$

$$C_{m,n} = C_m - C_{m,\text{aft}} \tag{A9}$$

### Tail Interference Terms

Vertical and horizontal tail drag was defined as the sum of form drag plus skin-friction drag for  $M \leq 0.90$  and wave drag plus skin-friction drag for M > 1.00. The subsonic form factors for the tails were calculated with the equation:

Form factor = 
$$1 + 1.44(t/c) + 2(t/c)^2$$
 (A10)

The individual fairings required for each tail location were also included in the skin-friction and wave-drag calculations. Values of  $C_{D, \text{tails}}$  are given in table 18.

The tail interference terms used in this report are consistent with those used in references 6 and 9. The total tail interference increment on the aft end was determined from

$$\Delta C_{D,it} = (C_D)_{\text{tails on}} - (C_D)_{\text{tails off}} - C_{D,\text{tails}}$$
(A11)

where  $(C_D)_{\text{tails on}}$  is the measured total aft-end drag for a given configuration,  $(C_D)_{\text{tails off}}$  is the measured aftend drag for the same afterbody/nozzle configuration with the tails removed, and  $C_{D,\text{tails}}$  is the computed value of tail drag as discussed previously. Hence this total tail interference increment includes the interference effects of one empennage surface on another, of the afterbody/nozzles on empennage surfaces, and of empennage surface on the afterbody/nozzles. It also includes drag increments associated with misalignment of the empennage surfaces with the afterbody flow field. The empennage interference effects on the nozzles alone were found from the following equation:

$$\Delta C_{D,in} = (C_{D,n})_{\text{tails on}} - (C_{D,n})_{\text{tails off}} \qquad (A12)$$

where the nozzle drags are obtained from equation (A8). This empennage interference increment, then, is the result of changes in nozzle external pressure distributions resulting from adding empennage surfaces to an afterbody/nozzle configuration. The empennage interference increment on the afterbody alone was then defined to be the difference between the empennage interference increments on the total aft end and the nozzles alone or

$$\Delta C_{D,ia} = \Delta C_{D,it} - \Delta C_{D,in} \tag{A13}$$

### References

- 1. Nichols, Mark R.: Aerodynamics of Airframe-Engine Integration of Supersonic Aircraft. NASA TN D-3390, 1966.
- Glasgow, E. R.: Integrated Airframe-Nozzle Performance for Designing Twin-Engine Fighters. AIAA Paper No. 73-1303, Nov. 1973.
- Runckel, Jack F.: Interference Between Exhaust System and Afterbody of Twin-Engine Fuselage Configurations. NASA TN D-7525, 1974.
- Richey, G. K.; Surber, L. E.; and Laughrey, J. A.: Airframe/Propulsion System Flow Field Interference and the Effect on Air Intake and Exhaust Nozzle Performance. Airframe/Propulsion Interference, AGARD-CP-150, Mar. 1975, pp. 23-1-23-31.
- Berrier, Bobby L.; and Staff, Propulsion Integration Section: A Review of Several Propulsion Integration Features Applicable to Supersonic-Cruise Fighter Aircraft. NASA TM X-73991, 1976.
- Berrier, Bobby L.: Effect of Nonlifting Empennage Surfaces on Single-Engine Afterbody/Nozzle Drag at Mach Numbers From 0.5 to 2.2. NASA TN D-8326, 1977.
- Burley, James R., II; and Berrier, Bobby L.: Investigation of Installation Effects on Single-Engine Convergent-Divergent Nozzles. NASA TP-2078, 1982.
- 8. Burley, James R., II; and Berrier, Bobby L.: Effects of Tail Span and Empennage Arrangement on Drag of a Typical Single-Engine Fighter Aft End. NASA TP-2352, 1984.
- Leavitt, Laurence D.: Effect of Empennage Location on Twin-Engine Afterbody/Nozzle Aerodynamic Characteristics at Mach Numbers From 0.6 to 1.2. NASA TP-2116, 1983.
- 10. Leavitt, Laurence D.; and Bare, E. Ann: Effects of Twin-Vertical-Tail Parameters on Twin-Engine Afterbody/

Nozzle Aerodynamic Characteristics. NASA TP-2158, 1983.

- Bare, E. Ann; and Berrier, Bobby L.: Investigation of Installation Effects on Twin-Engine Convergent-Divergent Nozzles. NASA TP- 2205, 1983.
- Leavitt, Laurence D.: Effects of Various Empennage Parameters on the Aerodynamic Characteristics of a Twin-Engine Afterbody Model. AIAA-83-0085, Jan. 1983.
- Berrier, Bobby L.: Empennage/Afterbody Integration for Single and Twin-Engine Fighter Aircraft. AIAA-83-1126, June 1983.
- 14. Capone, Francis J.: The Nonaxisymmetric Nozzle—It Is for Real. AIAA Paper 79-1810, Aug. 1979.
- Nelson, B. D.; and Nicolai, L. M.: Application of Multi-Function Nozzles to Advanced Fighters. AIAA-81-2618, Dec. 1981.
- Capone, Francis J.; and Reubush, David E.: Effects of Varying Podded Nacelle-Nozzle Installations on Transonic Aeropropulsive Characteristics of a Supersonic Fighter Aircraft. NASA TP-2120, 1983.
- Carson, George T., Jr.; Capone, Francis J.; and Mason, Mary L.: Aeropropulsive Characteristics of Nonaxisymmetric-Nozzle Thrust Reversers at Mach Numbers From 0 to 1.20. NASA TP- 2306, 1984.
- Capone, Francis J.; and Mason, Mary L.: Interference Effects of Thrust Reversing on Horizontal Tail Effectiveness of a Twin-Engine Fighter Aircraft at Mach Numbers From 0.15 to 0.90. NASA TP-2350, 1984.
- Peddrew, Kathryn H., compiler: A User's Guide to the Langley 16-Foot Transonic Tunnel. NASA TM-83186, 1981.
- Yetter, Jeffery A.; and Leavitt, Laurence D.: Effects of Sidewall Geometry on the Installed Performance of Nonaxisymmetric Convergent-Divergent Exhaust Nozzles. NASA TP-1771, 1980.

|       | Positi           | ion of—         |                |                  |
|-------|------------------|-----------------|----------------|------------------|
| Table | Horizontal tails | Vertical tails  | $\phi_t, \deg$ | $\delta_h$ , deg |
| 2     | Off              | Off             |                |                  |
| 3     | Mid              | Forward         | 0              | 0                |
| 4     | Mid              | Mid             | 0              | 0                |
| 5     | Aft              | Forward         | 0              | 0                |
| 6     | Aft              | Forward         | 0              | -5               |
| 7     | Aft              | Forward         | 0              | -10              |
| 8     | Aft              | Mid             | 0              | 0                |
| 9     | Aft              | $\mathbf{Mid}$  | 0              | -5               |
| 10    | Aft              | Mid             | 0              | -10              |
| 11    | Aft              | $\mathbf{Aft}$  | 0              | 0                |
| 12    | Aft              | $\mathbf{Aft}$  | 0              | -5               |
| 13    | Aft              | $\mathbf{M}$ id | -10            | 0                |
| 14    | Aft              | Mid             | 10             | 0                |
| 15    | Aft              | Mid             | 20             | 0                |
| 16    | Aft              | Mid             | 20             | -5               |
| 17    | Aft              | Mid             | 20             | -10              |

### TABLE 1. INDEX TO DATA TABLES

**FABLE 2. AERODYNAMIC CHARACTERISTICS FOR TAILS OFF** 

#### •100.• -0003 0010 • • 0034 .0028 • 0180 ZWU .0016 0010 • • 0024 -.0002 .0025 .0108 .0004 0001000 00016 .0003 .0003 0003 .0004 0000 CON .0035 .0035 -0044 0700\*\* ....... • 0028 ...... • 0019 0033 -0024 .0028 .0036 .0021 .0035 .0020 .0025 • • 0 0 2 6 .0026 .0037 .0021 .0019 0110 .0023 .0022 0200 . z 0001 -.0020 0024 000 -,0014 .0018 4 5000°-0003 om .0012 -0011 0008 ដ .0001 - 001 100 001 000 .001 . C N A F T .0197 00333 0314 0030 .0201 .0315 00400 0002 00046 0025 0016 0043 0018 0011 0023 0000 0024 0019 0015 0004000 0050 10 00500 0026 CDAFT 0080 0086 0085 N 9 N 1 7 N 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 9 N 1 .0065 850c 050 0055 0500054 0069 , 0054 0054 1054 0057 0062 0.061 CLAFT ....... -.0021 -.0042 -.0047 1900 · · .0020 ...... ....... .0023 .......... -.0049 -.0019 -0762 0001 .0035 .0005 0020 .0013 ..... 0166 0024 ž 1200 • • 0000 0015 .001 0021 0014 011 000 200 6 0033 0039 0028 0032000 0037 5200 0038 0037 01:00 0047 0031 100 0028 .0038 .0044 0052 0045 • 0019 1500--0129 • 0036 • 0036 • 0035 .0044 ដ -,0051 .0051 0038 -.0024 0047 0011 0011 0941 ÷ ; 4 0016 0043 0075 0094 -.0188 .0121 0160 00200 **\***000\*-.0102 .0039 CMJ 0170 .0006 .0184 .0089 .0024 .0067 .0018 0120 0123 0029 011900137 .0098 0167 1000 0021 0015 0151 C (D=F) . 00.40 . 00.41 . 00.41 . 00.41 . 00.40 . 04.80 . 1 ........ N 9 M C H C M M M N H 0 0 0 0 H 0 0 0 0 6170 7470 9140 9140 0188 0171 0204 0246 0348 8100 .1036 .1042 10043 .1034 <mark>ل</mark> .0046 0020 •.0063 -0082 -0056 - 3000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - -,0112 ....... -.0139 .0044 -.0032 -.0016 .00**3**8 0090 .00.59 0017 -.0071 .0183 .0011 . ALPHA • 10 8 92 1 09 **-** 0.8 60°-• 0 • 60 -9.8.8 -3.12 8,93 •3,12 ÷.09 5.92 80 • 09 2 0 0 8.93 .... 5 3.11 5 9.91 3.11 N In Шd 6 . 9 B 00.00 100.00 100.00 7U -95 M N O 3 C CI- C 5.00 5.04 .... 2 N N N -. 00 c . o 5 è. è . ¢ u 9 HUW 8666666 004 004 600 568 206 609 561 109. 40**%** 6.0 606 106 £ u 3 900 1 6 C 6 6 6 9 6 9 5 609 504 601

### ORIGINAL PAGE IS OF POOR QUALITY

TABLE 3. AERODYNAMIC CHARACTERISTICS FOR HORIZONTAL TAILS MID, VERTICAL TAILS FORWARD,  $\phi_t = 0^\circ$ , AND  $\delta_h = 0^\circ$ 

|           |                     | •             |              |          | 2               |                 |           |                       |               |        | i               |                |               |                |
|-----------|---------------------|---------------|--------------|----------|-----------------|-----------------|-----------|-----------------------|---------------|--------|-----------------|----------------|---------------|----------------|
| MACH      | NPR                 | ALPHA         | כרד          | C(D=F)   | CMT             | CL              | 00        | л<br>С                | CLAFT         | CDAFT  | CMAFT           | CL N           | CON           | Z<br>E         |
| 1.199     | .93                 | 00.           | 0012         | 59ZU"    | 8400 <b>-</b> - | Z               | .0259     | -004B                 | 0032          | 0184   | 0031            | 0200.          | 0075          | ••016<br>••03• |
| 0 v 2 - 1 | 3,00                | 00            | 0035         | 20045    | 0017            | -002B           | .0256     | - • 0041              | 0040          | 0185   |                 | 200            | 100           |                |
| 1,200     | 5.00                | 20            | 6046         | -0165    | 1000            | 0035            | .0259     | 007U                  | 0033          | 0184   | 0058            | 1000"-         | <b>6/00</b>   |                |
| 1,200     | 7.00                | <u>.</u>      | 87vJ -       | 0380     | A[00.           | -0034           | .0256     |                       | 1100-         |        |                 | 4000           | 1/00          |                |
| 1 200     | 8.99                |               | -0061        | - 0504   | 900a            | -,0043          | .0243     | 0036                  | 0039          | 0185   | 0200            | 7000*          | 8400.         |                |
| 1 199     | . 63                | -3.02         | 0519         | 0599     | , r559          | 0519            | 2020.     | .0559                 | - 020-        | 1020   | .0567           | 1.00.          | 8400°         |                |
| 1.201     | . 92                |               | 0032         | 0207     | 0046            | 0032            | .0263     | -0046                 | 005a          | 0146   | - 0034          | -000           | 1100          |                |
| 1001      | <b>6</b> 6          | 5.99          | 0529         | 1120.    | 0679            | .0529           | .0307     | 0679                  | 9270.         | 8040   | 0617            | • 01-0.        |               | 2000           |
| 100       | . 87                | 5.94          | 010          | 0404     | -1122           | .010.           | 2040.     | -,11,22               | <b>0755</b>   | 0,74   | -1041           | .0154          | • 0127        |                |
|           | 18.                 | 1 98          | 1300         | _0549    | -1633           | 1300            | .0545     | -,1633                | .1094         | 0110   | -,1521          | 9020.          | 0175          |                |
| 801       | 6.99                | 66 2 <b>-</b> | - 0571       | 034A     | .0618           | 0523            | .0289     | .0555                 | 0515          | 8020 ° | .0586           | 8000"-         | 0000          | 1500           |
|           | 6.90                | c             | 0000-        | .0379    | 0001            | +200 <b>.</b> - | .0257     | 45uù"=                | 0030          | CH10   | - 0032          | - 000t         | .0070         |                |
| 1.109     | 7.00                | 2.09          | .0553        | .0339    | 0629            | .0534           | .029A     | 0692                  | • 0730        | 8020   | 0633            | 5600           | 0600          | PC00 -         |
| 1.109     | 7.00                | 5.96          | .0979        | -0230    | -1087           | . 1927          | .0396     | 1150                  | .0757         | .0274  |                 |                | 0123          |                |
| 1.201     | 7.01                | А 07          | 1423         | -0096    | 1638            | 1337            | .0535     | 1701                  | .109A         | 0110   | -,1524          | 6120°          | .0105         |                |
| 000       |                     | c             | 0139         | 0118     | 1150-           | .0139           | .0114     | .0211                 | .0132         | 0142   | ••0193          | 1000           | -,002A        | 0018           |
| 905       | 2,01                | 0.0           | 1 NUU        | 0000     | 0142            | 1000            | .0106     | 6169                  | .0123         | ,0136  | 0179            | 0032           | 0030          | .0010          |
|           | 101                 | -<br>-        | .0065        | 0280     | - 0109          | 0079            | .0103     | -0153                 | 0110          | 0136   | - 0173          | 01700          | - 00.53       | •0200          |
|           | <b>v</b> 0 <b>v</b> | 207           | 0039         | - 0653   | 0000            | LOOSA.          | .0105     | 0127                  | .0110         | 0137   | 0159            | 0052           | -0012         | .0032          |
|           | 1.00                | 200           | 0005         | -1037    | 20002-          | 0200            | .0097     | 0114                  | 80108         | 0133   | -0155           | <b>-</b> ,0058 | 0036          | 1004           |
| 000       |                     | -3.01         | - 0051       | <0105    | - 0011          | - 0051          | .009A     | - 1011                | 2000.         | 0132   | ••0014          | 0053           | 0035          | .0003          |
|           |                     | 0.0           | 010          | 0112     | -0195           | .0101           | .0108     | -0195                 | .0131         | 10101  | <b>-</b> .0193  | <b>-</b> ,0030 | • 0033        | <b>-</b> 0003  |
| 600       | -                   | 5 0 0<br>2    | 0254         | 0128     | 0390            | .0264           | .0124     | 0390                  | .0279         | 0155   | <b>9</b> 070°-  | - v015         | 0031          | .0017          |
| 899       |                     | 5,00          | .0495        | .0167    | 0699            | • n495          | .0163     | <b>66</b> 90 <b>.</b> | .0460         | 0186   | 0691            | 5400°          | -0020         | +0008          |
| 006       | 1.12                | 66 <b>°</b> ¥ | .0866        | 0251     | - 1165          | . 6856          | .0247     | -,1165                | .0755         |        | -,1105          | .0111          | -0001         | ••0020         |
| . 900     | 5.01                | •3,n1         | 0164         | 0670     | .0137           | 0105            | .0087     | •00teo                | 001A          | ,0127  | .0015           | - · · · · 8 7  | 0700 -        | 0.044          |
| .899      | 5,00                | .0.           | 0000         | - 0667   | 0034            | .0040           | £600°     | 0116                  | .0101         | 7134   | - 0149          | -004           | 2700 -        | .0052          |
| 006       | 5,00                | 3.01          | 0200         | -,064A   | 0266            | - 220 -         | .0110     | 0344                  | .0253         | 0149   | 0368            | -0054          | - 0050        | 0054           |
| .899      | 00.1                | 5,99          | .0504        | 0612     | 0541            | .0443           | 01/13     | 0619                  | .0436         | 0176   | -0638           | 2000           | -0033         | 0200           |
| .899      | 5.00                | н, 99         | • 0 4 2 5    | - 0525   |                 | , 0825          | .0227     |                       | .0757         | 1720   | 0/01            |                | •••••         |                |
|           | 1.04                |               | 9000         | 0000     | 0113            | .0028           | .0065     |                       | 0101          | 10105  | 0154            | - 0075         | 500°-         |                |
| .601      | 2.01                | 00 <b>.</b>   | - DUNB       | ••0344   | - 0034          | 2200            | - 002<br> | 1600.                 | 1000          | 1010   | 1210.           | <b>6000</b>    |               |                |
| - 9 u 5   | 20 <b>5</b>         | 00            | 200 <b>.</b> | - 0.80 F | 1200            | 1000<br>1000    | .005      | 2710 <b>.</b>         | 5010 <b>.</b> |        |                 | **00* <b>-</b> |               |                |
| - 602     | 5°.5                |               | c200.        |          |                 |                 |           |                       |               |        |                 |                |               |                |
| , 6n4     | 5.02                |               | 0014         | - 1637   | 5500            | 1500            | 2400      |                       | 1010.         |        |                 |                |               |                |
| - e u u   | 1.04                | 00 • 2 •      | - 013b       | 0017     | 0114            | 0136            | . 1075    |                       |               |        |                 |                |               |                |
| 109.      | 1 U 1               | ••01          | .0076        | < 800 .  | 0134            | .0076           | 0078      | -0134                 | • 01 02       | 1010   | 5410 <b>.</b> . | 0500.          | 9200-         | <b>2000</b>    |
| , 6n0     | 1.04                | 3.02          | 0620.        | .010     | 0381            | 0620.           | .0103     | 0341                  | 1010          | 111    | -0397           | • • • • • • •  | - 0015        | .0015          |
| . 599     | 1.04                | t.01          | .0612        | .0165    | 0765            | - 1612          | .0162     | • 0765                | •             | 12101  | 570 <b>.</b> .  | 1500.          |               | • 0010         |
| . 6 n G   | 1.04                | 9. U          | -<br>639     | 67Z0 .   | -1164           | .0936           | .0245     |                       | 5 40.         | 0100   | • 1116          | 0210.          | 6200 °        | 5000-          |
| . 600     | 3,51                | <b>₩3</b> ,01 | -,0244       | 1012     | 1920.           | 0153            | .0063     | 0.142                 |               | 1010   | 64 L 0          |                | + 0042        | - 0012         |
| . 400     | 5.5                 | . 01          | .0054        | -1009    |                 | 4400            | .0069     |                       |               | 1010   | •••0150<br>•••• |                | 1900 <b>.</b> | 1000           |
| 109.      | 3,51                | 3.01          | .0365        | - 097A   | -0323           | 0341            | 9600.     | -0441                 | .0114         |        | ••0414          | 1200           | - 0010        | 1200.          |
| . 599     | 3,51                | 6.01          | .0747        | - 0923   |                 | .0467           | .0155     | 8180 <b>.</b>         | - 0507        | 2910   |                 |                | 5000.         | PC00 -         |
| 9 u g     | 3.51                | 60° X         | .1115        | 0834     | 1097            | -0479           | .0217     | -1215                 | 1240.         | 120.   | ••1125          | .0150          | \$200         | 2400           |

ORIGINAL PAGE IS

L

L

AERODYNAMIC CHARACTERISTICS FOR HORIZONTAL TAILS MID, VERTICAL TAILS MID, TABLE 4.

| Ĭ               |                      |
|-----------------|----------------------|
| FOR             |                      |
| CHARACTERISTICS |                      |
| <b>MAMIC</b>    | $_{1} = 0^{\circ}$   |
| AERUD           | AND $\delta_h$       |
| BLE 4.          | $\phi_t = 0^\circ$ , |
| -               |                      |

| MACH   | a a v      | ALPHA               | CLT         | C ( D=F )   | ΓMJ                    | ป           | 5         | Ň            | CLAFT      | CDAFT         | CMAFT     | CLN          | CDN       | CMN       |
|--------|------------|---------------------|-------------|-------------|------------------------|-------------|-----------|--------------|------------|---------------|-----------|--------------|-----------|-----------|
| 9.1    | 1.10       | 00                  | .0119       | .0139       | 0175                   | .0119       | .0135     | 0175         | .0088      | 0181          | -0197     | .0031        | -0046     | 5200      |
| .897   | 2.01       | - 01                | 6600        | 0082        | 0150                   | 010         | .01210    | 0177         | 1600       | 0167          | 0203      | 0015         | -0046     | 0026      |
| .899   | 3,03       | 00                  | .0083       | 0200        | 0127                   | 1600        | .0121     | 0171         | 0086       | 1710          | 0193      | 1100         | 0500      | 0.022     |
| .898   | 5.03       | - 02                | .0084       | - 0630      | 0103                   | 0104        | .0125     | -0182        | 2600.      | 0168          | 0202      | 1100         | 2400 -    | 020       |
| 901    | 7.01       |                     | .0066       | - 1013      | 0.54                   | 1600        | .0121     | -0166        | 0082       | 0168          | 0187      | 0000         | L 7 0 0 - | 0.021     |
| .898   | 1,10       | -3.01               |             | 0115        | 0030                   | 0017        | .0111     | 0200         | 2000-      | 0167          | - 0061    | - 0015       | - 0056    | 0031      |
| 808.   | 1,10       | C C -               | .0093       | 0132        | - 0174                 | 2606        | .0128     | - 0174       | 0004       | 0176          | 0206      | 1000 -       | 0078      | 0032      |
| 106.   | 1.09       | 2.97                | .0207       | .0149       | n317                   | .0207       | .0145     | 0317         | .020.      | 0187          | 0367      | 0000         | 2100-     | 00200     |
| . 898  | 1.09       | 5,99                | 0425        | 0183        | - 0600                 | .0425       | .0179     | 0090 -       | 0389       | 0200          | 0646      | 0015         | 0027      | 0046      |
| .898   | 1.10       | 8,99                | .0815       | 0264        | - 1085                 | . 0815      | .0260     | -1085        | 0697       | 0263          | -1083     | 0118         | 000       | 2000      |
| . 899  | 5.01       | -3,01               | -,0092      | - 0653      | 0055                   | 0033        | .0106     | 0.023        | 0000       | 0160          | - 0055    | - 0026       | 0054      | 0.031     |
| .899   | 5.01       | .01                 | 0058        | - 0641      | - 0087                 | . 0077      | 021u.     | .0165        | 0086       | 0110          | -0194     | - 000        | - 0050    | 00200     |
| .899   | 5,00       | 1,00                | .0259       | - 0621      | .0285                  | .0239       | .0138     | 0363         | .0215      | 0178          | 0387      | 0023         | 0040      | 0024      |
| .897   | 5,00       | 5.98                | 0150.       | - 054r      | • 0564                 | 0449        | 1110.     | n642         | 2040 -     | 0100          | 0661      | 0047         | - 0027    | .0019     |
| 006    | 4.99       | R.97                | .0922       | - 049A      | - 1017                 | .0823       | .0251     | -1095        | .0685      | 0254          | -1064     | 0137         | - 0003    | 0131      |
| - 6.2  | 1.04       | - c -               | u600°       | 1900°       | - 0155                 | 0600        | .0061     | 0155         | -0112      | 0107          | 0172      | 0022         | .0046     | 0017      |
| .611   | 2.01       | - u                 | <b>2800</b> | 0070        | 0097                   | .0106       | • 002a    |              | .0112      | 1010          | - 0171    | 0007         | - 0 U S I | .0014     |
| . 60.0 | 3.01       | <b>1</b> 0 <b>1</b> | .0099       | - 0Ang      | -0093                  | .0130       | .0050     | 0191         | .0120      | 0105          | 0182      | 0100         | - 0055    | 0000-     |
| . 601  | 3.50       | - 02                | 8600.       | - 1012      | 0073                   | . 132       | .0058     | - 0191       | .0117      | 0105          | .0179     | 0015         | - 0047    | -0012     |
| - 602  | 5.02       | 00                  | .0093       | -1640       | 0015                   | .0136       | .0063     | .0190        | .0120      | 0104          | 0182      | 0017         | - 0041    | 000A      |
| , 6n1  | 1 04       | -3.02               | 0800.       | .0061       | . 2073                 | - , r 1 8 0 | .0057     | . 0073       | 0176       | 0100          | . n 0 7 8 | - 0003       | - 0052    | - 0005    |
| - 6.2  | 101        | 0.                  | 1210.       | .0075       | 0170                   | .0127       | .0071     | 0170         | .0118      | 1010.         | 0179      | 6000°        | -, nn36   | 6000°     |
| 900-   | 1.04       | 3,00                | .0334       | <b>6010</b> | 0417                   | .0334       | .0105     | 0110 -       | 8010°      | 0120          | 0431      | .0026        | -0015     | .0021     |
| .598   | 1.04       | 5.97                | .(1653      | .0171       | - 0793                 | .0653       | .0167     | -0793        | • 0563     | 0157          | 0786      | 0000         | .0010     | 1000 -    |
| - 598  | 1.04       | 8.97                | . 1967      | 1920-       | -1168                  | .0967       | .0257     | -1188        | .0817      | ,021A         | -,1150    | 0150         | 0039      | -0038     |
| , 599  | 3,51       | -3.00               | 0176        | - 1025      | •0 <b>2</b> 0 <b>4</b> | 0086        | • 0076    | .0086        | 0084       | 0108          | .00A9     | - 0003       | - 0050    | - 0004    |
| - 602  | 3.51       | - c<br>•            | .0128       | 1005        | 0600 -                 | .0161       | .0065     | 0207         | .0122      | 0105          | 0185      | .0039        | • • 0040  | 0022      |
| , 6n1  | 3.51       | 2.99                | .0431       | - 0974      | 0384                   | .0408       | .0101     | 0502         | .0328      | 0119          | .0461     | .00A1        | 001A      | 1400      |
| , 599  | 3.50       | 5.97                | .0812       | - 0907      | 0761                   | 0733        | .0170     | 0879         | .0578      | 0150          | 080-      | .0155        | r 100°    | 0070      |
| .598   | 12°        | 8,98                | .1170       | -,0813      | .1157                  | .1034       | .0259     | -,1275       | .0832      | 0219          | 1173      | -020S        | .000.     | 0103      |
| 1.198  | 4 C -      |                     |             | .0273       | .0133                  | 0114        | .0269     | .0133        | -0000      | 0187          | .0087     | 0016         | 6800      | 9100      |
| . 200  | 3.01       | - 05                | .0140       | -0017       | .0171                  | 0133        | .0259     | •0176        | 0103       | 0186          | 1600°     | ••0200       | .0073     | 5300      |
| 1.201  | 5          | .01                 | 0124        | 0144        | <b>2</b> 714 <b>2</b>  |             | .0201     | <b>96</b> 00 | -0105-     | 0185          | .0097     | 000 - B      | .076      | 1000.     |
| 1.201  | 00 2       |                     | 1600 -      | .0380       | 1010                   | 0083        | .0255     | • 0040       | 2010-      | 0185          | .0101     | 7200.        | 0071      | -,0057    |
| 1.199  | 00 6       |                     | - 600 -     |             | .0116                  | - U019      | .0244     | .0034        | 0080       | <b>,</b> 0186 | .0079     | • 100 •      | .005A     | 0045      |
| 1,198  |            | -3.01               | -°0200      | .0313       | . 111 J                | -0200       | .0309     | .0717        | -0530      | 5120 J        | .0647     | ••0040       | 9600      | .0071     |
| 1,202  | <b>1</b> 8 | .01                 | 0125        | 0280        | .0128                  | 0125        | .9276     | .0128        | -004       | 0187          | 0078      |              | 6400.     | 0500      |
| 1.200  | . 8        | 2.98                | , 139 A     | 1010        | -, n488                | .0394       | * u 2 u 3 | 0488         | .0353      | 02020         | 0500      | 0000.        | 00600     | .0013     |
| 1,197  | 9          | 5,98                | .0766       | .0394       | 0912                   | .0766       | .0392     | 0912         | • 0 6 4 A  | 1001          | - () A 79 | .0118        | 0120      | 003\$     |
| 1.205  | 8          | в 97                | .1158       | .0530       | 1420                   | .1158       | .0526     | -1420        | 5820.      | 0353          | 1354      | .0175        | 0174      | - 0006    |
| 1,202  | 10.7       | -3.00               | 0598        | 077U -      | . 1696                 | 0550<br>-   | .0285     | .0633        | - 0514     | 2120          | .0671     | 00AU         | .0072     | 0038      |
| 1.199  | 00 1       |                     | 1600        | 0382        | .0104                  | 0083        | .0255     | • 0041       | •• N N A 4 | 0187          | .0078     | •000•        | .006A     | -0037     |
| 1.200  |            | 2.97                | 0481        | - 0346      | - 0521                 | .0462       | .0293     | .0584        | .0359      | , 0205        | • 0200    | •10 <b>3</b> | 490v.     | - r079    |
| 1.201  | 20.7       | 5.95                | .0872       |             | ••0935                 | . 1820      | .383      | -0998        | .0457      | 8040          | 0888      | .0162        | .0115     | 0110<br>- |
| 1.201  | 7.01       | 8.97                | .1308       | -0116       | 1471                   | .1222       | • 0214    | -,1534       | 1460°      | 0355          | -,1352    | , n241       | .159      | -,0182    |

## ORIGINAL PAGE IS OE POOR QUALITY

AERODYNAMIC CHARACTERISTICS FOR HORIZONTAL TAILS AFT, VERTICAL TAILS FORWARD,  $\phi_t = 0^\circ$ , AND  $\delta_h = 0^\circ$ TABLE 5.

-, 002A -.0020 • 0016 -.0007 -000g - 007A --0022 --0005 --0007 - 0062 6000. -0043 • 0059 -.0106 -.0012 -.0081 ••0131 0000 .0006 0010 ..0041 9000 0020 -.0021 0018 0200 0000 012 00200 CMN 0100 .0028 .0010 .0017 -.0007 .0004 -,0086 6100\*--.0061 -.0203 .0017 .0027 .0006 -,0022 0000 1000. --0027 -,002A -.0030 -0025 1200 0000 - 0026 -000 B 0014 0086 0075 0061 0085 - 0017 --0022 CDN £80u 0114 0192 0082 0083 - 0027 -0033 -.0027 - 0028 .0058 0103 0136 .0185 -0020 - 0029 -0024 0029 2000. 0020 0030 0084 - 0035 -\_001A 053 0141 0003 -0034 -.0034 --0044 -.0023 -0031 -.0013 -\_004B -,0008 C L N -,0043 0164 0116 0188 0258 .0128 .0900.-.0028 .0115 0125 0013 0018 1100. •200**.** .0010 0008 -.0025 -.0003 0100 1000. -.0058 -.0031 .0029 -,0029 -0038 .0034 .0116 0160 ....... -.0015 0200 - no13 .0067 .0111 --0197 -.0176 ••0152 --0045 -.0196 -,0008 -.0146 -.0143 -.0140 •0045 -.0018 --0022 -.0171 -.0357 - 1031 .0757 .0798 CHAFT -.0009 .0582 - 1079 . 594 .1561 -.0161 -,1065 --0144 -.014R -. n403 -,0014 --0024 -.1UA0 -.0532 -.0165 -.0132 -.1123 ••0151 .1175 -.0634 •.0013 -.0622 -.0571 -0017 .0151 COAFT 0087 0174 0,75A 0349 0172 0193 0255 9720 0117 0115 0115 0113 9112 0118 0132 0154 0213 0108 0114 0124 0148 0.085 0.086 0136 0193 56v0 0047 0137 0173 0173 0173 0173 0171 0195 0198 0195 0087 2600 0089 0100 00400 0101 CLAFT 0100 -.0058 -.0051 -.0054 10201 .0384 1020 4100. 0116 .03AA .0007 0520 0547 .071A .0117 .0104 0103 2600 .0636 9600. .0103 0105 .0104 .010. .0286 0100 0105 -04AA .0050 .0390 -.0054 -.0065 -0105 .0311 0000. -0045 .0575 . USA1 -, 0 n **1**5 -,1764 -.0176 -.0143 -.0204 -.0354 -.1072 -.0137 -.0465 -.0857 2700--. n70P -.0203 .0020 .0618 -.0119 -.0147 -1659 -.0140 -.0134 .0104 -.0131 -.0374 -,0034 .0029 .0690 -.0040 --0526 -.112A -.0345 •.0106 -.0764 -\_nn2A .1157 -... 0146 .1166 .0152 .0161 -.1261 ξ 0520 .0233 0140 0063 0053 0255 0088 0084 0400 .0064 .0064 .0250 006900 0167 .0232 0290 .0243 .0311 .0399 0277 .0085 2400 0.095 0148 2800. . U087 .0103 .0164 0058 0391 0531 1000. .0111 0076 0087 0101 0103 0257 <u>8</u> -.0035 -.0514 -.0510 0000 -, n036 7700--. n5n1 .0075 .0079 5760-.0882 .1236 0.00 .1287 .0058 .0103 .0227 0782 5520. .0416 0046 0048 .0076 0278 .05A7 .0876 .0345 -.0038 .0060 9000--00.94 .0082 . 1072 .0028 .0419 0047 0751 .0071 -.0108 -. n143 . 0663 -.0038 0501 .0067 .0061 Ч -. 015n - 0165 -.0020 0098 -,0068 -,1267 -0994 -.0038 - U 374 **-**0764 -.0030 - n34A -.0639 - 0354 .0626 -.1128 -,0119 9700--.0023 0000 -.0131 - 1166 -,1144 62V()**-**--,0694 850r. - 114R 1701 -,0117 0104 -\_ nn2A 0110 .0048 . 1575 .0645 -.0540 .0740 .0015 -,1659 .0271 -.1157 000. CHI -0650 -.0679 -,0670 00A0 -,0359 \$600 •••0110 , 0086 0000 .0237 .0067 -.0396 -- 0Ang -,1631 n62u. 0315 - 03R4 -.0243 - 0295 -.0671 -1051 .0152 -,0616 -,1006 .0168 - 1003 -, URUR 0043 -.0391 50403 .0115 .0107 .0254 -.1021 -,0971 - 0905 .0261 1207 0545 ..0100 -.0535 0068 -.0165 -..... -.0341 C (D=F) .0079 -.0235 0103 0127 0040 0876 -.0038 -.0046 --0047 0960 --.0062 .0519 .0419 .0475 . nn41 0278 .0058 0366 1004 .0058 .0030 .0046 0241 0046 .0024 1077 .0559 .0958 1730. .0028 .0851 .0029 -.0108 9100----0060 .0882 1236 0041 .0501 1371 0741 CL ₹ 0003---0 ----0 N с -**6**0**\***-6 c = 00.4 **6**0 • 6 u • 6 u • 60 -R. 01 ي ج ا - 0 0 4 - 0 0 4 - 0 0 4 -3,09 2 91 5 90 .... -.10 -3.10 2 89 5 91 8.89 100 0 0 1 0 1 0 0 1 0 0 1 0 -3,08 0000 0000 0000 •3°04 -3.08 60 -ALPHA 5.02 .10 с Т. 4.99 4.99 10.7 с с Г.Т. ----۲ د ع 00000 00000 00000 00000 3.50 न 0 5°. <u></u> 9 נו 0000 0000 ---ccc6 cccc-6 и. 99 и. 98 и. 97 2.01 · • 5.01 a a z 199 895 896 906 599 2005 2005 .199 202 901 918 000 .899 899 897 .897 009 600 600 5.5 .612 602 602 598 C L Q 601 6 n 1 612 HUVH

ORIGANAL PANE OF POOR QUALITY

16

TABLE 6. AERODYNAMIC CHARACTERISTICS FOR HORIZONTAL TAILS AFT, VERTICAL TAILS FORWARD,  $\phi_t = 0^\circ$ , AND  $\delta_h = -5^\circ$ 

| CMA      | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                         |
|----------|------------------------------------------------------------------------------------------------------------|
| CDN      | + • • • • • • • • • • • • • • • • • • •                                                                    |
| C L N    | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                      |
| CMAFT    | 88000000000000000000000000000000000000                                                                     |
| CDAFT    | 3 6 N N H B 3 6 N N N M M 6 B C B C O C O D 3 O M 3 0 N B B C A<br>D 3 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| C L. AFT | 0 C C C C C C C C C C C C C C C C C C C                                                                    |
| M<br>U   | C C C C C C C C C C C C C C C C C C C                                                                      |
| 5        | 20000000000000000000000000000000000000                                                                     |
| CL       |                                                                                                            |
| CHT      | <pre></pre>                                                                                                |
| C (D-F)  | N-M9C3CL30CC02000000000000000000000000000000                                                               |
| CLT      | <pre>************************************</pre>                                                            |
| ALPHA    | 11111100001000000000000000000000000000                                                                     |
| X d N    | - MW3 F                                                                                                    |
| MACH     | ~ • • • • • • • • • • • • • • • • • • •                                                                    |

TABLE 7. AERODYNAMIC CHARACTERISTICS FOR HORIZONTAL TAILS AFT, VERTICAL TAILS FORWARD,  $\phi_t = 0^\circ$ , AND  $\delta_h = -10^\circ$ 

| MACH | 2<br>2<br>2 | ALPHA  | CLT    | C(D=F)       | CMT   | CL     | CD    | х<br>С | CLAFT    | CDAFT         | CMAFT | CLN            | CDN            | N N U       |
|------|-------------|--------|--------|--------------|-------|--------|-------|--------|----------|---------------|-------|----------------|----------------|-------------|
| 401  | 1 - 04      | •<br>• | - 1016 | .0169        | 1713  | -1016  | .0165 | .1713  | - 0969   | 0240          | 1587  | 10047          | -0075          | .0125       |
| 604  | 2.00        | 0.0    | - 1074 | - 0294       | 1806  | 1201 - | .0158 | 1745   | -0994    | 0236          | 1621  | - 0057         | - 0078         | .0124       |
| 508  | 3.00        | 00     | -1117  | - 0706       | 1886  | -1087  | 0154  | 1787   | -1013    | .0238         | .1649 | - 0074         | -0084          | .0138       |
| 192  | 3.51        | 00     | -1134  | - 0924       | 1913  | -1100  | .0165 | 1294   | -1014    | 0239          | .1654 | -,0083         | -0074          | .0140       |
|      | 06.1        | 0      | - 1159 | .1539        | 1972  | - 1115 | .0170 | 1797   | -1025    | .0237         | .1664 | 0600 -         | 0068           | .0133       |
| 805  | 1.03        | -2.99  | 1181   | 0255         | 1915  | - 1161 | .0251 | 1915   | - 1109   | 0306          | .1790 | - 0071         | -,0056         | .0125       |
| 5    | 1.04        | C      | • 1035 | 0190         | 1714  | - 1035 | .0186 | .1714  | • • 0969 | .0238         | .1590 | - 0066         | - 0152         | 0125        |
|      | 1,04        | 3,00   | .0854  | 0134         | 1459  | - 0854 | 0130  | .1459  | - 0795   | 0181          | 1339  |                | 0050           | .0121       |
| 598  | 1 04        | 6.00   | - 0602 | 0111         | 1085  | 0602   | .0107 | .1085  | 0566     | 0138          | .0998 | 0036           | -0031          | .0087       |
|      | 1,05        | 9.01   | 0367   | 0094         | 0125  | 0367   | 0600* | .0725  | 0340     | 0120          | .0647 | 0027           | 0030           | .0078       |
| 599  | 3.50        | -3.00  | - 1375 | .0829        | 2150  | - 1284 | .0244 | . 2033 | 1167     | <b>,</b> 9310 | .1871 | 0117           | - 0066         | .0161       |
| 665  | 3.51        | 01     | - 1145 | 0906         | 1912  | - 1111 | .0173 | 1794   | -1016    | ,0236         | .1653 | 9600 -         | <b>-</b> ,0063 | • U 1 4 0   |
| 900  | 3,51        | 3.01   | 0889   | - 0966       | 1629  | 0912   | .0111 | 1151.  | 0833     | 0176          | .1389 | nn79           | 190v"-         | .0123       |
| .597 | 5.50        | 6.00   |        | -1004        | .1267 | - n664 | .0077 | .1148  | 0608     | .0132         | .1055 | 0056           | 055            | <b>2600</b> |
| 599  | 3,51        | 00.6   | • 0555 | <b>1</b> 009 | .0848 | 0392   | •0097 | .0730  | 0349     | 0114          | .0655 | <b>*</b> ,0043 | • 0020         | .0075       |

ORIGINAL PAGE IS OF POOR QUALITY

Ì

Ţ

i

TABLE 8. AERODYNAMIC CHARACTERISTICS FOR HORIZONTAL TAILS AFT, VERTICAL TAILS MID,  $\phi_t = 0^\circ, \text{ AND } \delta_h = 0^\circ$ 

| Z           | (14) (14) | 046         | )14        | 044         | 152             | 175         | 052     | 151    | 5.9    | 77     | 200           | 145          | 126            | 73           | 235            | 34             | 744    | 134         | 33       | 25          | 145        | 39             | 161            | 173            | 29            | .47                | 36          | 75      |              |         | GI<br><b>P</b> ( |              |                |                | ູ                     | JA<br>Z |                | <u>.</u><br>11  | 02Y 50        | 32      | 202      | 22            | 145         | 690   | 23            |
|-------------|-----------|-------------|------------|-------------|-----------------|-------------|---------|--------|--------|--------|---------------|--------------|----------------|--------------|----------------|----------------|--------|-------------|----------|-------------|------------|----------------|----------------|----------------|---------------|--------------------|-------------|---------|--------------|---------|------------------|--------------|----------------|----------------|-----------------------|---------|----------------|-----------------|---------------|---------|----------|---------------|-------------|-------|---------------|
| z           | 3.0.0     | ō•<br>0     | č••<br>• u | 4 - 01      | 00              | ,<br>,<br>, | °.<br>∼ | ۲ °0(  | č = 9  | 3 - 0  | -<br>-<br>-   | 4 - 0 C      |                |              | 2              | ۍ<br>ج         | ۲<br>۲ | 5<br>•<br>• | 7 .<br>0 | с<br>•      | с <b>,</b> | п <b>•</b> 0(  | 0              | т <sup>0</sup> | ہ ۔<br>د      | 7 <b>.</b> 0(      | 0           | ۍ<br>۲  | )0<br>•<br>0 | 5       | č -              |              |                |                |                       |         | •••            | 1               | а<br>С        | 3<br>0( | н<br>10( | 5 <b>-</b> 0( | )<br>-<br>- |       |               |
| C J         | .010      | .010        | .010       | 600.        | 800°            | .011        | 011     | .012   | .014   | .019   | <b>6</b> 00   | 600°         | .011           | <b>01</b>    | .018           | - 005          | -005   | -005        | .001     | - 001       | -002       | -005           | -002           | - 001          | 000           | .001               | - 005       | - 001   | -1001-       | 001     | -005             |              |                | -001           |                       | • 001   | 100 -          | <b>600</b>      | 000           | 100     | -001     | • 000         | 000         | 003   | Sù0           |
| C L N       | 0031      | 0039        | 0011       | 1000        | .0011           | 0071        | -0019   | .0027  | 0141   | . nire | <b>-</b> 0039 | • 0004       | .0141          | .0213        | .0282          | 0011           | 0024   | 0200        | 0017     | 0010        | 8700-      | 0024           | 0021           | ••0010         | -0082         | 0057               | 0025        | .0015   | 005200       | .0126   | 0035             | -0053        | 0001           | 5000           | 1000.                 | 0056    | 0100.          | 9000            | 1000          | .0139   | •200 •   | .0017         | .0069       | 0159  | 90Z0 <b>.</b> |
| CMAFT       | .0110     | .0096       | .0045      | .0059       | .0061           | .0615       | .0059   | -,0532 | • 0951 | -,1375 | .0620         | .0032        | 0558           | -,0963       | -,1409         | -,0260         | 0241   | ••0546      | 0253     |             | 0130       | -,0263         | <b>-</b> ,0396 | -,0574         | 1042          | -0122              | -,0251      | 0410    | 0657         | -1108   | - 0177           | 0174         |                | 1010           | 0 h l û •             | .0056   | <b>•</b> •0176 | 0425            | 0757          | -,1151  | .0083    | 0194          |             | 0638  | ••1225        |
| COAFT       | 0100      | 0169        | 0167       | 0168        | 10167           | 2610        | 0100    | , n189 | ,0256  | 0338   | 0101          | ,0167        | 0140           | 0255         | 01120          | 0110           | 2910   | 0143        | 0144     | 0139        | .0135      | 0148           | .0161          | 0180           | 2920,         | ,0128              | 2110        | 0157    | 0810         | ,0245   | 16.0             | 0000         | 2600 2         | 2600           |                       | 00000   | 5000           | 0114            | 0152          | 1120    | 0900     | 1600          | .0115       | .0157 | 2220          |
| CLAFT       | 0116      | 0107        | 86UO .     | 0077        | 820J <b>.</b> - | 0476        | 0079    | .0340  | .0638  | 1000   | 0479          | U05A         | .0359          | 0647         | .0927          | .0136          | .0126  | .012A       | .0132    | .0130       | .005A      | 9110.          | .0220          | .0325          | .0540         | .005 <b>.</b>      | • u 1 3 0   | .0224   | .0376        | • 0661  | .0115            | £110°        | 0127           | 8210 .<br>8210 | .0125                 | 4100    | • 0 1 1 4      | -02820 <b>-</b> | .0501         | .0747   | 0054     | .0126         | .0322       | .0552 | 2010.         |
| х<br>U      | .0158     | 5 n l a 5   | .0071      | .0014       | .0010           | .0690       | .0111   | 1920   | 6ÚUI - | • 1452 | .0618         | 0012         | ••0684         | • 1137       | 1644           | <b>-</b> .0226 | 0197   | 0212        | 0220     | 0224        | 00A5       | 7220 -         | 0335           | .0500          | -1013         | 0074               | 0215        | +.0385  | .0636        | 1129    | -0154            | 0152         | -0204          | 0020           | rovo.                 | .0056   | <b>-</b> 0158  | 0394            | 0763          | 11A3    | .0045    | 0217          | • • 0529    | 0926  | -,1346        |
| CD          | .0272     | .0269       | .0267      | .0262       | .0247           | .0308       | .0279   | .0316  | -040S  | .0531  | ,02A9         | • 1260       | .0304          | .0395        | .0523          | .0125          | .0119  | .0121       | .0127    | .0120       | .0110.     | •0124          | .0139          | .0166          | 0200          | .0111              | .0123       | .0141   | .0171        | .0260   | <b>6</b> 900     | .0066        | • 002          | .0075          | NH00.                 | .0073   | • 00 H 4       | .0115           | .0160         | .0250   | .0071    | .00A7         | .0124       | -01A7 | .0277         |
| لر<br>د     | 0147      | 0146        | - 0100 -   | 0073        | 0067            | 0547        | 0129    | .0366  | .0779  | 1001   | 0518          | 0054         | , <b>15</b> 00 | .0860        | .1210          | .0125          | .0102  | .0109       | .0115    | 1510.       | 0100       | .0114          | .0200          | 2120.          | .0702         | - 000 <del>4</del> | .0105       | 0720    | • 0 4 0 1    | .0787   | 0800.            | 0040         | 0127           | 5113           | - C I C -             | 0072    | 1010.          | 1950.           | ~02a5         | •0AR6   | 1000     | .0144         | 102u        | .0711 | 1000          |
| C M T       | .0158     | .0167       | .0115      | .0077       | 2600.           | _0690       | .0111   | 0481   | 1009   | - 1452 | .0681         | 1500         | 0621           | -1074        | <b>-</b> ,1581 | • <u>,0226</u> | 0170   | 0169        | 0142     | 0111        | 0085       | 0224           | 0335           | 0500           | - 1013        | P000               | 0137        | 0307    | 0557         | -,1051  | 0154             | - 0002       | -0104          | - 0001         | <b>b</b> 200 <b>.</b> | .0065   | 015A           | - U394          | 0763          | -,1183  | 2020     | 0100          | 0411        | -080H | 1227          |
| C(0+F)      | .0276     | <b>0056</b> | -0159      | 0375        | -,0605          | CIE0.       | .0243   | .0320  | .0406  | .0535  | £710**        | 0378         | 0330           | 0237         | 0106           | .0129          | -0079  | 0257        | 0633     | 1025        | _0114      | .012A          | .0143          | .0170          | .0253         | 0646               | 0633        | 0617    | - 0587       | - 0494  | .0073            |              | - 0805         | -1004          | 16.54                 | .0077   | 8400°          | .0119           | .0164         | 0264    | - 0986   | - 0079        | 0455        |       | .079A         |
| CLT         | 0147      | 0153        | 0120       | 00A6        | 00A4            | 0547        | 0129    | .0366  | .0779  | .1091  | 0565          | 0065         | <b>0250</b>    | .0914        | .1290          | .0125          | 1000   | .0095       | 2000.    | .0094       | .0010      | -0114          | .0200          | .0315          | .070 <i>2</i> |                    | .00A5       | .0260   | .0451        | -0880 - | 0000.            | <b>09</b> 00 | 9 <b>6</b> 00. | 8000           | 1800.                 | 0072    | .0104          | .0201           | 5920 <b>.</b> | , PAA   | 01A0     | 0110.         | 0170        | .0791 | .1136         |
| AL PHA      | • 0 •     | .07         | 20         | 6v <b>*</b> | 9 c) •          | -2.93       | .07     | 3.07   | 6.08   | 90°6   | <u>-</u> 2,93 | • 0 <b>8</b> | 3,09           | <b>6</b> .06 | 90.6           |                | M u    | 05          | 03       | 7U <b>-</b> | -3,02      | • 04           | 2.96           | 5,95           | 8.96          | -3.03              | <b>-</b> 03 | 2.97    | 5.97         | 20° a   | • 03             | -°5          | -04            | 1 C •          | • 07                  | -3.03   | £0°.           | 2,9Å            | 5.97          | 4 07    | -3.04    | 03            | 2,96        | 5.05  | 8.07          |
| 2<br>2<br>2 | .89       | <b>10</b>   | 5.02       | 20.1        | 20.6            | - 90        | 69.     | .87    | 86     | - 82   | 6.99          | 7.04         | 7.00           | 101          | 7.00           | 1,009          | 1.99   | 3.00        | 5,03     | 7.01        | 1.10       | 1.09           | 1.09           | 1.08           | 1,10          | 5,00               | 5.00        | 5.01    | 5.00         | 5.02    | - 0°2            | 2.01         | 2°05           | M 1            | 2°.                   | 1.04    | 1.05           | 1 ° 0 4         | 1.04          | 1.05    | 3.49     | 3.51          | 3.52        | 5.2   | 5.52          |
| MACH        | 1.203     | 1,199       | 1,201      | 1.201       | 1,199           | 1.197       | 1.201   | 1,196  | 1.204  | 1,195  | 1,202         | 1.202        | 1,202          | 1,203        | 1.201          | 106.           | . 896  | . 900       | - 9 n 2  | . 897       | . 899      | - <b>0</b> - 1 | . 897          | . 898          | . 900         | , 899              | .901        | - 9 n 1 | .899         | 006     | .601             | 600          | , 598          | - en1          | . 600                 | , 6n0   | . 601          | - 6 J           | - 6 - 2       | ,599    | . 602    | . 6.3         | .601        | .598  | - 600         |

TABLE 9. AERODYNAMIC CHARACTERISTICS FOR HORIZONTAL TAILS AFT, VERTICAL TAILS MID,  $\phi_t = 0^\circ$ , AND  $\delta_h = -5^\circ$ 

| - |        |       | F<br>L        |        | ۲<br>۲      | ī       | ć      | 2           | C   A C T     | L D D F T | CMAFT         | Z                     | 200                      | ž<br>Ž        |
|---|--------|-------|---------------|--------|-------------|---------|--------|-------------|---------------|-----------|---------------|-----------------------|--------------------------|---------------|
|   | 2<br>2 |       | ۔<br>د        |        | -<br>-<br>- | ال<br>ر |        | ;           | -             | 2         | •             | 3                     | ,                        |               |
|   | 1.08   | 00    | 11411         | 0137   | .0614       | 0411    | .0133  | .0614       | - 0359        | 2810.     | .0580         | 0042                  | • <b>*</b> 00 <b>*</b> • | .0034         |
| _ | 2.01   | 0     | - 0454        | - 0074 | 0664        | - 0444  | .0126  | .0637       | - 0379        | 5110      | .0597         | -0064                 |                          | 00700         |
| _ | 5.02   |       | .0495         | - 0257 | 0728        | -0481   | .0126  | -0684       | 0389          | -0172     | .0615         | .0003                 | 9700                     | .0070         |
|   | 100 7  | 00    | - 0530        | 0628   | 0801        | - 0510  | 0127   | .0723       | 1100-         | 0173      | .0647         | <b>66</b> 00 <b>-</b> | 0046                     | .0076         |
|   | 0      | 207   | - 0550        | -1018  | 0859        | 0531    | .0117  | 0747        | 1200 -        | 0171      | .0566         | 0107                  | -,0054                   | .0081         |
|   | 1.08   | -2.98 | - 1514        | 0162   | 0751        | - 0514  | .0158  | .0751       | 0443          | 19197     | .0710         | 0071                  |                          | .0041         |
| _ |        | c     | -0453         | 0137   | 0631        | - 0453  | .0133  | .0631       | 0363          | .0176     | .0574         | 0600*-                | <b>-</b> 0073            | .0058         |
| ~ | 1.08   | 2.99  | 0345          | 0114   | 0487        | - U345  | .0110. | .0487       | 0277          | 0157      | .0433         | <b>-</b> ,0068        | 8700**                   | .0054         |
|   | 0.0    | 6.03  | - 0242        | 009600 | 0304        | 0242    | -0092  | .0304       |               | 0144      | .0224         | 8800 -                | - 0052                   | 0800          |
| • | 60.    | 9.03  | 0082          | 0119   | -0171       | 5800    | .0115  | 0171        | 0101          | 0163      | 0186          | -,0019                | 0047                     | .0015         |
| • | 5      | -2.99 | 0650          | - 0607 | 0948        | - 0597  | .0154  | .0870       | • 0 4 9 6     | 10194     | .0795         | 0101                  | 0700                     | • U U V 6     |
|   | 50     | 5.0   | - 0541        | 0633   | _0805       | - 0522  | .0123  | .0727       | 0407          | 0170      | .0642         | -0115                 | 4700 <sup></sup>         | .0085         |
|   | 5.02   | 3.01  | 0379          | - 0665 | 0642        | -0400   | .0096  | , n564      | 0319          | .0150     | .0497         | 1800                  | 0054                     | .0067         |
|   | 5.02   | 6.01  | . 0213        | 0683   | 0417        | - 0274  | .0078  | .0339       | 0182          | 0134      | .0264         | 0093                  | 0056                     | .0075         |
|   | 5.01   | 00.6  | 1210          | 0658   | 0011        | .0021   | .0098  |             | - 0072        | ,0151     |               | 0051                  | 0053                     | •0046         |
|   | 1 04   | 00    | 0505          | .0086  | .0696       | 0505    | .0082  | .0696       | <pre></pre>   | , 0122    | .0629         | 0127                  |                          | .0067         |
|   | 1.99   | 10    | 0543          | - 0375 | 0803        | 0520    | .0073  | * t L U *   | 0414          | 0124      | .0679         | 0106                  | 0050                     | .0064         |
|   | . 0 .  | 207   | 0544          | - 0789 | .0836       | 0514    | .0065  | .0738       | 0416          | 0125      | .0682         | 9600*-                |                          | .0055         |
|   | 3.5    | 10    | .0546         | - 1001 | .0855       | 0512    | .0072  | .0738       | ••0422        | 0125      | .0690         | 0091                  | <b>-</b> ,0053           | <b>60047</b>  |
|   | 5.00   | 00.   | 0558          | -1635  | .0914       | n515    | .0071  | .0739       | •270          | 1124      | .0699         | ••00800               | 0054                     | 0700          |
|   | 1.04   | 10.2- | 0631          | .0121  | .0928       | 0631    | .0117  | .0928       | 0544          | ,0157     | .0877         | <b>-</b> 0087         | 0000-                    | .0051         |
|   | 1 04   | .01   | 0451          | £600°  | .0679       | 0451    | 6800.  | .0679       | 0378          | 0126      | .0629         |                       | 0037                     | .0050         |
|   | 1.04   | 5.00  | - <u>0288</u> | 0077   | 0449        | 0288    | .0073  | 6 + + + 0 * | 0211          | 0110      | <b>.</b> 0360 | 0077                  | -0037                    | <b>, 0068</b> |
|   | 1.04   | 5,98  | - 0070        | .0083  | 0118        | 0070    | .0079  | .0118       | 0001          | 0111      | .0058         | 0069                  | -,0032                   | <b>9200</b>   |
|   | 50.1   | 10.6  | 0185          | 0115   | 0259        | 0185    | .0111  | 0259        | .0217         | 0128      | 0285          | 0031                  | 0017                     | .0026         |
|   | 3.50   | -2.99 | - 0784        | - 0953 | 1143        |         | .0113  | .1025       | 0606          | 0161      | .0967         | 0089                  | 8700                     | . n058        |
|   | 3.51   | 00    | 0517          | 0996   | .0844       | 0484    | .0077  | .0727       | 0423          | ,0126     | .0693         |                       | 6700°-                   | • 0034        |
| - | 5.51   | 2.99  | -0250         | -1011  | .0534       | 0273    | .0058  | .0417       | 0227          | 0107      | .0398         | 0046                  | -0014                    | .0019         |
|   | 3,50   | 6.00  | 0,028         | -1010  | 0192        | 0051    | .0060  | .0075       | <b>-</b> 0008 | 0100      | .0066         | 0043                  | 0040                     | 6000 -        |
|   | 3.52   | 0 ° 6 | .0364         | - 0979 | 0197        | .0226   | .0105  | 0317        | • r 2 2 6     | ,0127     | -,0300        | 0000.                 | 0022                     | 0016          |
|   |        |       |               |        |             |         |        |             |               |           |               |                       |                          |               |

ORIGERAL PART IS OF POOR QUALITY

ļ

I

1

TABLE 10. AERODYNAMIC CHARACTERISTICS FOR HORIZONTAL TAILS AFT, VERTICAL TAILS MID,  $\phi_t=0^\circ,$  and  $\delta_h=-10^\circ$ 

| CMN       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Z D Z     | <ul> <li>■</li> <li>■</li></ul> |
| CLN       | 0.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|           | 01100000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ĉ Ņ Å F T | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CLAFT     | <ul> <li>••••••••••••••••••••••••••••••••••••</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ۶<br>U    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C<br>D    | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| נו        | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| F 70      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C(D=F)    | 1 • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CL T      | ► M 0M0NBM:NNH - ► 5 ► M 0M0NBM:NOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ALPHA     | 1 14 400 M 1400<br>0000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| A A A     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MACH      | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

## ORECALL FLORE ST OF POOR QUALINY

TABLE 11. AERODYNAMIC CHARACTERISTICS FOR HORIZONTAL TAILS AFT, VERTICAL TAILS AFT,  $\phi_t=0^\circ,$  AND  $\delta_h=0^\circ$ 

| N F O        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| NGO          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )<br>)<br>) |
| CL N         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ***         |
| CMAFT        | 11111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| COAFT        | - E & F IR NJ IR C & O IR & F F & F F F M NM NN IR IR O - & NM N<br>F & O & O & C F NO O O O C C C O O HM & E & E & E & O & C MO<br>F + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3           |
| CH AFT       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5010        |
| ч<br>С       | 0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| C            | - F WR D + O + F W & F W O D M C F 3 M D G 3 M O + O + F W & F W O D M C F 3 M D G 3 M O + O + O + O + O + O + O + O + O + O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102         |
| ŭ            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10124       |
| CMT          | NRUSSCHART     NRUSSCHART <td>0121</td> | 0121        |
| C (D-F1      | 11111111 11111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 1 6 0 •   |
| CLT          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • 1 U 8 7   |
| AL PHA       | 11111 MUC 11111 M 100C 11111100<br>202000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0, 0        |
| 37<br>6<br>7 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.00        |
| H J H H      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 59B       |

! ! | TABLE 12. AERODYNAMIC CHARACTERISTICS FOR HORIZONTAL TAILS AFT, VERTICAL TAILS AFT,  $\phi_t = 0^\circ$ , AND  $\delta_h = -5^\circ$ 

| U       | č -    |
|---------|--------|
| CLN     | 0042   |
| CMAFT   | 0785   |
| CAFT    | 0164   |
| CLAFT   | - 0501 |
| X<br>U  | .0851  |
| c       | .0140  |
| נו      | ••0543 |
| 121     | 0.851  |
| C (D=F) | 0144   |
| CLT     | - 0543 |
| ALPHA   | 50°•   |
| ۲<br>۵  | 1.06   |

1

| 2<br>2<br>0 | 111                                                                                                   |
|-------------|-------------------------------------------------------------------------------------------------------|
| C D N       | M & C N K Z - M K B C C M C K K M K H<br>NNNNNNNNNN - NMMNMNNN<br>C C C C C C C C C C C C C C C C C C |
| CLN         | • • • • • • • • • • • • • • • • • • •                                                                 |
| CMAFT       | 00000000000000000000000000000000000000                                                                |
| CHAFT       | 30010000000000000000000000000000000000                                                                |
| CLAFT       |                                                                                                       |
| х<br>U      | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                    |
| C<br>C      | 00000000000000000000000000000000000000                                                                |
| CL          | M 0 − 3 0 0 F 0 N N 0 F 0 F 0 F 0 N N 0 F 0 F 0                                                       |
| ۲×1         |                                                                                                       |
| C (D-F)     | 11111111111111111111<br>- 0.00000000000000000000000000000000000                                       |
| CLT         | IIIIIIIIIIIIIIIIIIIIIIIIIIIII<br>COCOCCOCCOCCOCCCOC                                                   |
| ALPHA       | 1 1 1 1 W 1 V N 0 2 1 1 1 2 W 1 V V V 0<br>C C C C C C D 0 C C C C C C C C D 0 0 C C C C              |
| 2<br>2<br>2 |                                                                                                       |
| н Ц е,      |                                                                                                       |

ORIGANUL PUBLICA DE POOR QUALITY

TABLE 13. AERODYNAMIC CHARACTERISTICS FOR HORIZONTAL TAILS AFT, VERTICAL TAILS MID,  $\phi_t = -10^\circ, \text{ AND } \delta_h = 0^\circ$ 

| MACH          | aaN                                  | ALPHA | CLT                                     | C ( D=F ) | CHT                                   | CL      | C             | Σ<br>U          | CLAFT            | CHAFT         | CMAFT        | CLN            | CDN           | CMN            |
|---------------|--------------------------------------|-------|-----------------------------------------|-----------|---------------------------------------|---------|---------------|-----------------|------------------|---------------|--------------|----------------|---------------|----------------|
| 1.199         | -94                                  | •••   | - 0136                                  | 0280      | .0146                                 | • 0136  | .0276         | .0146           | 9600             | 1210          | 0600         | 0100           | 6600<br>6600  | .0056<br>2026  |
| 1,200         | 20°5                                 |       | 5910 <b>.</b> .                         | 4500 - I  | • • • • • • • • • • • • • • • • • • • |         | 0220          | . 010           |                  |               | - 000 -      |                | 6600°         | 0004           |
| 0.01          |                                      |       |                                         | 0381      | 0121                                  | - 0105  | .0258         | .0057           | 0101             | 0175          | 1010         | 0001           | 0083          | 0044           |
| 198           | 8.96                                 |       | - 0115                                  | - 0602    | 0130                                  | 8600-   | .0246         | .0047           | -0000            | 0174          | 0084         | - 000A         | 0071          | - 0037         |
| 1.199         | .89                                  | -3.00 | 0556                                    | 0311      | 0704                                  | 0556    | .0307         | .0704           | 046F             | , 0202        | .0613        | -,00AB         | .0105         | •0041          |
| 1.200         | 88.                                  | 00 -  | 0145                                    | .0284     | 0139                                  | 0145    | .0280         | .0139           | -,0085           | 1210          | .0075        | ••0060         | .0104         | .0063          |
| 1,200         | 88.                                  | 5°96  | .0322                                   | .0311     | -,0437                                | .0322   | .0307         | 0437            | .0295            | 0191          |              | .0027          | .0117         | .0026          |
| 1,202         | .86                                  | 5.97  | .0703                                   | • r393    | .0915                                 | .0703   | .0389         | 0915            | .0585            | 0 2 4 B       | 0.872        | .0118          |               | - 0043         |
| 1,199         | <b>1</b> 8 <b>1</b>                  | 60°T  | 1026                                    | .0517     | - 1379                                | .1026   | .0513         | 1379            | .0865            | 5220 <b>1</b> | 1314         | .0161          | 0188          | ••00 <b>65</b> |
| 1,200         | 1.03                                 | =3°05 | 0576                                    | 0350      | .0694                                 | .0527   | .0280         | .0631           | 0480             | 0000          | 0629         | • 007B         | 6800 °        | 2000           |
| 1.201         | 10 1                                 |       | 0116                                    | -0380     | 2110.                                 | 0101    | .0257         | 0049            | 0034             | 0172          | <b>61</b> 00 |                | .0085<br>0105 | 9200 -         |
| 1,202         | 20.2                                 | 200°5 | 0 E 4 C                                 |           | - 0218                                |         | 1620°         | - 0.5 M -       | .0315            |               |              | C010.          |               | 10040<br>1040  |
|               |                                      |       |                                         |           |                                       |         |               |                 |                  |               |              |                |               |                |
|               |                                      |       | 1121.                                   | 4210      |                                       |         |               | 1961            |                  |               |              |                |               |                |
|               |                                      |       |                                         |           |                                       |         |               |                 |                  | 1110          |              |                |               |                |
|               |                                      |       |                                         |           | .0100                                 |         | 1210          |                 |                  | 0140          | 7020-        | 2500           | -0055         | 00.54          |
|               |                                      |       | 0040                                    |           |                                       |         | 0110          | - 0167          | 1010             | 0148          | - 0214       | - 0041         | 0018          | 0048           |
|               |                                      | 201   | 0048                                    | 101       | 0000-                                 | 0073    | 0126          | - 0173          | 0110             | 0145          | 0217         | - 0035         | 0020          | 0045           |
| 809           | 00                                   | -3,02 | 0028                                    | 0122      | 1200 -                                | A 500 - | 0118          | .0031           | 0031             | 10147         | 0083         | 0900           | - 0020        | 0051           |
| 206           | 1.09                                 | 0.5   | 0056                                    | 0135      | - 0153                                | .0056   | .0131         | 0153            | .0103            | 0156          | • 0 2 0 8    | 0047           | 0024          | .0055          |
| .898          | 1.08                                 | 2,99  | 0133                                    | 0144      | • 0254                                | .n133   | .0140         | -,0254          | .0175            | ,0160         | 0328         | 0042           | - 0200        | .0074          |
| 0.00          | 1.08                                 | 5,99  | .0263                                   | 0170      | 0432                                  | .0263   | .0166         | 0432            | .0274            | ,0172         | 0503         | ••0011         | • • 0006      | .0071          |
| . 900         | 1.09                                 | 8,98  | .0630                                   | .0245     | 092A                                  | , n630  | .0241         | 092A            | .0562            | 0220          |              | .0068          | .0013         | .0034          |
| 503           | 5,01                                 | -3.03 | - 00AZ                                  | 0635      | -003A                                 | 0023    | .0118         | 0039            | .0037            | 0143          | - 0193       | 0060           | • 0056        | 0053           |
| .899          | 5.01                                 | 10    | .0058                                   | -0635     | 1000                                  | .0078   | .0127         | 12121           | • 0104           | 0120          | 0211         | 1200           | - 0053        | 0040           |
| .899          | 5° C                                 | 2.97  | .0220                                   | 0618      |                                       | 0200    | 0144          | 0332            | 7660.            | 0158          | ••0364       | 900 <b>0</b> - | • 0014        | 2500           |
| 898-          | 0<br>0<br>0                          | 5,99  | 0110                                    | - 0587    | - 0476                                | 0320    | .0172         | <b>*</b> • 5554 | • 0318           | 0175<br>10175 | • 0575       | 0032           | F000 -        | 1200           |
| , 898         | 5.04                                 | 6 0 ° | .0800                                   | -0204     |                                       | \$010°  |               | 0101-           | 1640 -           | 2020          |              | 1110.          | 2200          | 9100-          |
| 109           | 1.04                                 |       | 2900 <b>.</b>                           |           | 1010                                  | 1000 ·  |               |                 | # 6 0 0 <b>-</b> |               |              | 0500           | - 000 -       | 7700°          |
| 965           |                                      |       |                                         |           |                                       | 1610.   |               |                 |                  |               |              |                |               |                |
| , 599<br>600  | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |       | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |           |                                       | •110•   |               | - 0140          |                  |               |              | 0004           |               |                |
|               |                                      |       |                                         |           | 1000                                  | 0117    | 2000          | - 0175          |                  | 0000          | 0169         | 0000           | 000           | - 0007         |
|               | 101                                  | 10.0  | - 0076                                  | 6830      | 0074                                  | - 0076  | 0085          | 0074            | 1500             | 0104          | 0076         | 200 ·          | 0019          | 0002           |
| 109           | 1.06                                 | 0.0   | 0084                                    | 0102      | - 0137                                | .0048   | .009A         | -0137           | 2010.            | 0103          | 0154         | - 0014         | -000          | .0017          |
| 209.          | 1.04                                 | 2.09  | .0261                                   | 0131      | 0357                                  | .0261   | .0127         | 0357            | 0261             | 0115          | .0389        | .000           | 0013          | 1032           |
| 009.          | 100                                  | 5,99  | .0539                                   | 0181      | 0714                                  | .0539   | .0177         | • 0714          | .0476            | 0146          | .0721        | .0063          | 0032          | . 1007         |
| . 597         | 1.04                                 | R. 97 | 9780°                                   | .0266     | -1126                                 | .0838   | .0262         | -,1126          | .0711            | 2020          | 1097         | .0127          | 0000          | 0030           |
| .599          | 3,50                                 | •3,03 | 0191                                    | -1000     | .0225                                 | 0100    | .0075         | .0107           | 0071             | 0103          | .0102        | -0029          | -,002A        | 5000.          |
| -601          | 3,50                                 | M U . | .0087                                   | 0981      | 0063                                  | .0121   | 1000.         | •.01A1          | .0110.           | 20102         | 0167         | .0011          | 0011          | 0014           |
| , 599         | 3.49                                 | 66°~  | .0376                                   | - 0451    | - 0362                                | .0354   | .0122         | - 0480<br>-     | •0300            | 0115          | - 0452       | .0053          | 6000          | 0028           |
| - 59 <u>8</u> | 03.0                                 | 5.97  | 0738                                    |           | 0440                                  |         | •0186<br>•2·5 |                 | .0519            | 0149          | 0620 -       | .0140          | .0037         | -0068          |
| .603          | 3.50                                 | 89.8  | .1073                                   | 0787      | 1150                                  | 626U°   | .0268         | 1267            | .0752            | 9020.         | -,1164       | .0187          | .0062         | -0103          |

!

1

TABLE 14. AERODYNAMIC CHARACTERISTICS FOR HORIZONTAL TAILS AFT, VERTICAL TAILS MID,  $\phi_t = 10^\circ$ , AND  $\delta_h = 0^\circ$ 

| 2<br>X<br>U | 111<br>111<br>111<br>111<br>111<br>111<br>111<br>111                                        |
|-------------|---------------------------------------------------------------------------------------------|
| CDN         | 7 L 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2                                                   |
| N<br>C      | <pre>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</pre>                                            |
| CMAFT       | 00000000000000000000000000000000000000                                                      |
| CUAFT       |                                                                                             |
| CLAFT       | 40 F F F F F F F F F F F F F F F F F F F                                                    |
| 1<br>U      | 2000<br>000<br>000<br>000<br>000<br>000<br>000<br>000                                       |
| C<br>C      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| ر ر<br>د ر  | 40000000000000000000000000000000000000                                                      |
| ĽμJ         | 11111111111111111111111111111111111111                                                      |
| C (J=F)     | 00000000000000000000000000000000000000                                                      |
| CLT         |                                                                                             |
| АЦРНА       |                                                                                             |
| 01<br>12    | WU49-4WW37-4WW3<br>00000000000000000000000000000000000                                      |
| MACU        | 00N000000NN0<br>0000000000000000<br>                                                        |

ORIGINAL FAUE IS OF POOR QUALITY TABLE 15. AERODYNAMIC CHARACTERISTICS FOR HORIZONTAL TAILS AFT, VERTICAL TAILS MID,  $\phi_t = 20^\circ$ , AND  $\delta_h = 0^\circ$ 

-0003 .0044 • 0030 -, nU66 -0054 • 0100 -.0156 -.0217 -0008 -.0023 -,0085 .0052 .005A 0001 .0023 .0015 .0019 -.0051 2 ¥ 0 0045 0000-.0033 .003A 0030 .0027 01010 0059 .0037 0018 .0014 -.0005 0055 0027 -0025 .001A -.0013 -0005 -000B -,0025 -0045 .0019 0027 .0006 .0008 -0118 0019 -0030 .0030 .0026 -0026 -.00.52 -00ZB .......... .0014 •000°-0010 -,0024 -.0029 -,0020 °0027 0087 -.0015 0000 -\_\_001A 0092 0184 0104 • 0023 -0023 -0014 0093 .0175 -.0031 0200 0001 0034 0094 0071 0110 1410 0131 -.0010 -.0029 -.0028 00 0105 -0037 1010 -0054 -.0036 t200 --,0043 -,0045 -.0035 .0010 - 0066 ר∠ כר .0112 .0166 .0009 .0007 080u .0148 .0194 -.0037 -.0029 -0000 -.0074 .0027 .0055 .0103 1220. -0034 .030 .0021 .0003 -,0059 6000°-.0038 -,0015 --0009 -.0029 .0123 -0012 0062 0200 -9410. .0127 -.0026 .0100 - 0017 1100 1200 -.0275 --0045 -.0108 -.0901 -.1298 -,0975 .0079 - 1444 -.0285 -.0266 -.0273 -.0740 .0161 -.0174 -.0170 -.0506 .0105 0078 5070°. ----------.0283 -,0462 • 1151 --0084 -.1209 ....... -.0169 0600 0000 -.0266 -.0271 -,0669 -.0454 -.0832 CMAFT 0095 0081 -.0529 .0113 .0695 - 1431 -.0527 .0171 -1251 C DAFT 0165 0187 0120 0331 0165 8760 0332 0135 0128 0129 0121 0149 0172 0,235 0119 0126 9173 0236 U0R7 2000 9020 0145 0208 0166 0164 0165 0164 0193 0184 0126 0086 0.088 0088 0091 7010 0105 0141 0000 0088 0095 0164 194 CLAFT ••0103 - 0545 0155 0260 0729 .0826 .0657 .0953 .0668 .0952 0156 0145 0149 .0152 .0032 .0026 0149 .0104 .0097 0100 0300 .0343 .0605. -.0539 .0341 .0561 .0110 • · · · · · -.0113 -0092 9600 ---0095 0.691 0435 0100 0106 -.0132 0144 0113 0600 -0341 -.uSin -.0252 **-**,0228 -.0242 -\_\_0423 -.0176 -,0182 .0179 .010A -.0155 ••0434 •.0248 •.0256 -,1282 • 0 0 <del>0</del> • .0061 .0136 .0707 .0840 .0146 9110. .004A .0753 -.1015 .0055 .1660 -.0239 .0143 .0135 - 1497 -.0627 -.1145 -.0072 -.0610 -,1145 -.0047 -.0255 -.0725 -.1234 -.0136 **•**•0193 -,0551 -- 09A7 **•**1416 ž •00A9 (1297 .0107 0600. .0164 .0112 .0264 .0258 0256 .0248 0235 .0063 .0067 .0072 .0171 .017R 0515 0244 .0340 .0104 .009R 0000 .0101 6600. .0249 .0255 0059 .0260 0058 .0072 .0270 0270 0300 0.349 .0280 .0288 0507 0162 .0104 0063 0064 .0077 0108 0131 5 ....... -,0600 5910.--.0112 -.0140 -.013A .1213 .0122 .0123 .0474 0020 .0316 6760 .0368 .0769 .0854 0100 .012A 0.062 0044 .0103 .0119 .0405 -.0162 .0162 .119 -.0121 1970. .0140 0856 .0144 .1047 .0444 0119 0134 0100 0H00-.0641 .0753 -. 0011 .0271 0402 .0033 .0121 1 - 1015 - 1497 -1597 -,0252 -,1145 -\_0177 -.0077 7900 --.0155 -,0434 - J840 .0265 -,0433 -\_\_\_0A6A 0124 0136 .0770 .0119 -.0564 -.0072 -,0256 -.0423 -\_0647 -,1156 -0143 -,0075 .0108 -,1282 -0075 5112 · 0140 0753 -.0610 .0031 -.0005 .0130 -.0510 .1082 -\_ 1201 -.0194 -\_012A - 129A -.0169 0135 t ε υ 0393 -.0357 -.0276 -.0656 -0596 16004--0394 -,0799 -1011 -,1624 .0175 .0264 -.101A -,1002 - 0965 - 0347 - 0394 - \*0349 -,0103 -0904 .0264 0045 0310 .0093 0135 0253 5110. -.0615 .0274 ....... -.0663 -.1027 0111 .0166 , nn67 .0068 .00A1 -.0799 CCD-FI .0907 ... 0254 .0104 0301 4 - 064B .0464 0089.00 6760 -.0136 .0368 .1119 .1299 **6000** .0701 0059 .0233 .0769 -\_\_\_\_\_35 .0122 .0106 0109 1410. .0535 .0956 .0064 .0067 .0316 2420. -\_0149 -.0129 .0271 --0092 0834 .00099 ....... .0134 5000. .003A .0061 -.0119 .00A9 .1184 0110---.0169 -.0162 .0641 ר <del>י</del> =2°08 ALPHA 2.95 .04 -2.97 ° 0 3 7 Ú \* -2.97 5 0 C 6 0 C 7 C 6 0 C 200 6 U 0 0.03 03 10. 0 4 3,05 9.01 9.01 -2.95 3,02 4,02 9,00 9,00 • ۲۲ -2.98 3.04 6.02 ••03 03 0.4 .03 03 с С .03 5 .05 10. \$0° • 01 • 0 4 .52 10 60 601 20. 5.04 66. - 52 . 99 . 0 ۰° 5.0 5.5 3.51 - 90 . 89 **č** č - - N A B A A ē. 3.52 5.03 6 5 • 8 6 2 2 002 .200 **599** 201 -198 698 599 505 6 n 0 202 198 .199 201 201 006 006. 898 206 206 206 0.06 3 u 6 006 600 602 598 パロショ 201 201 901 897 901 [ U 9 " 601 601 509 601 NACH

ł I I

ł

L

26

TABLE 16. AERODYNAMIC CHARACTERISTICS FOR HORIZONTAL TAILS AFT, VERTICAL TAILS MID,  $\phi_t = 20^\circ$ , AND  $\delta_h = -5^\circ$ 

| MACU    | 8<br>8<br>7 | АЦРНА             | CLT     | C (D=F)           | F M Û    | Ū               | C       | х<br>С | CI AFT                | CRAFT  | CMAFT         | v TJ        | 20v            | r<br>U                   |
|---------|-------------|-------------------|---------|-------------------|----------|-----------------|---------|--------|-----------------------|--------|---------------|-------------|----------------|--------------------------|
|         |             |                   |         |                   |          |                 |         |        |                       |        |               |             |                |                          |
| 106     | 1.09        | 00                | 0325    | .0124             | .0519    | 0325            | .0120   | .0519  | -0309                 | 0168   | .0501         | 0016        | 8400°-         | 100                      |
| 006     | 2.04        | - 01              | 0375    | -000 <del>-</del> | .0587    | 0365            | .0109   | .0559  | 0330                  | 0161   | .0533         | 0035        | -,0052         | 005                      |
| 006     | 3.00        | 0.0               | 0415    | 0267              | . 1653   | - 0405          | -0112   | .060.  | 033B                  | .0162  | .0549         | 0067        | -,005n         | 900                      |
| .898    | 5,02        | 00                | - 0457  | - 0651            | 0732     | 0438            | .0114   | .0653  | • 0350                | 0161   | 0581          | -0019       | - 0047         | .007                     |
| 898.    | 20.7        | • 01              | 04110 - | -1037             | .0791    | - 0464          | .0105   | .057A  | 0372                  | 0158   | 1090          | 0042        | <b>*</b> *0023 | 1200                     |
| 897     | 1.09        | 90"2-             | - 0440  | .0145             | .0726    | 987U <b>.</b> - | .0141   | .0726  | 0436                  | 0180   | .0702         | -* n049     | U03A           | 1 <b>2</b> 00 <b>5</b> 1 |
| - 6 -   | 1.00        |                   | - 0376  | 0129              | 0545     | 0376            | .0125   | .0545  | 0314                  | 0165   | <b>.</b> 0508 | 2400        | 00040          | 500                      |
| . 9 n 1 | 00.1        | 60°2              | 0238    |                   | .034R    | -0238           | .0107   | .034A  | -0185                 | , n151 | .0307         | 0053        | • • 0044       | .004                     |
| .899    | 1.04        | 5.09              | -0108   | 5010.             | .0118    | 010A            | .000 B  | .0118  | 0032                  | 0147   | .0053         | 0075        | -00049         | 900                      |
| . 899   | 1,10        | 8,09              | 0520    | 01510             | 0372     | .0250           | .0147   | 0372   | .0235                 | 0176   | 0375          | .0016       | .0029          | 000                      |
| .899    | 00 7        | •3.01             | - 0649  | 0622              | 0990     | 05A0            | .0135   | .0AR1  | 0501                  | 0179   | .0805         | - 00A9      | -0043          | .007                     |
| . 899   | 5.02        | 00                | 0471    | .0651             | 0737     | 0452            | •0111   | .0658  | 0358                  | 0158   | .0541         | -0003       | 9700 -         | . 40.4                   |
| 0.00    | 5,00        | 66° č             | 02A1    | - 0566            | .0523    | 1010-           | 2000.   | .0445  | 0220                  | 0144   | .0340         | -,0072      | 0051           | .006                     |
| .899    | 5.04        | 6.0Z              | 00A2    | 0685              | .0249    | 0143            | .0079   | 1710.  | 0052                  | 0137   | 1010.         | - 00A1      | - 005A         | .007                     |
| .898    | 5.04        | 00.6              | 0220    | 0635              | 0190     | .C17R           | .0126   | 0269   | • 0 S Q 3             | ,0163  | • 0315        | 5200 -      | .0037          | 004                      |
| . 600   | 1.04        | 00                | 0459    | C 8 0 0 -         | .0005    | -,0459          | .0078   | .0665  | <b>•</b> •0320        | 0118   | .0403         | 0100        |                | 000                      |
| . 6 n 1 | 2.00        | 000               | 0505    | 0342              | 0780     | 04R1            | .0068   | .0720  | 0394                  | .0118  | .0654         | 00A7        | 050            | 000                      |
| .598    | 3.02        | -01               | -,051A  | 0110              | .0830    | 0487            | • 500 * | .0730  | 6070°-                | 0210   | .0673         | -0078       | 0061           | .500                     |
| .599    | 3,52        | .01               | .0510   | -1016             | 0134U    | 0483            | .0066   | .n725  | 040A                  | 0120   | .0672         | -,0075      | ••0054         | °002'                    |
| 599     | 5.03        | -<br>-            | - 0535  | - 1661            | 1160     | • 0491          | .0065   | .0734  | 0421                  | 0120   | .0688         | 0070        | 0055           | 007                      |
| 009     | 1.04        | -3,00             |         | .0111             | • 10 d b | 0624            | .0107   | 9760"  | ••0566                | ,0154  | .0903         | 005A        | 4000-          | 700                      |
| . 6 . 0 | 1,04        | 20                | 0411    | , U08A            | .0654    | 1170 -          | 1400.   | .0654  | 0301                  | 0121   | .0606         | 0500        | 0037           | v70v*                    |
| 0.0     | 1.04        | 3.01              | 0211    | .0077             | .0376    | 0211            | .0073   | .0376  | 0159                  | .0107  | .0314         |             | -,0034         | .900                     |
| 600     | 1 0 4       | ູ່ເ               | 0040    | 0000              | 1000     | 0700            | 9400.   | 0001   | -00AA                 | 0113   | • • 0 0 5 P   | 1000        | 0027           | .005.                    |
| 1.0     | 1,05        | 66 <sup>°</sup> ч | .0331   | .014n             | -1012    | .0331           | .0130   | 2170 - | 0330                  | 0138   | 0433          | 100u .      | 2000           | .002                     |
| - 600   | 3,50        | -3.01             | - 0792  | - 0969            | 1179     | 0702            | 2010.   | .1061  | 0432                  | , 0158 | 8000.         | 0200        | -,0055         | •000                     |
|         | 3,52        | 2 v <b>*</b>      |         | -1009             | (140).   | 1980-           | .0070   | .0723  | <b>~</b> 170 <b>~</b> | ,0122  | .0678         | • " U 0 1 0 | 0052           | 001                      |
| 6 u ]   | 3.52        | 3,00              | 01AR    | -1023             | C870.    | 0211            | .0055   | .0364  | 0177                  | , c105 | - 23 A        | 0034        | 0050           | • 003(                   |
| .599    | 3,52        | 6.00              | .0103   | -100B             | 2800.    | .0063           | .0073   | 0037   | .00P5                 | 0104   | 0056          | ••0054      | -0031          | .001                     |
| c 9     | 3,51        | 00.6              | .0507   | 0932              | 0343     | .0372           | .0133   | 0461   | .0337                 | 013R   | ,0445         | • 0 U Z A   | ••0004         | -100                     |

## ORIGINAL PAGE IS OF POOR QUALITY

TABLE 17. AERODYNAMIC CHARACTERISTICS FOR HORIZONTAL TAILS AFT, VERTICAL TAILS MID,  $\phi_t=20^\circ,$  AND  $\delta_h=-10^\circ$ 

| N<br>N<br>D | 00000000000000000000000000000000000000                                                                |
|-------------|-------------------------------------------------------------------------------------------------------|
| CDM         |                                                                                                       |
| CLN         |                                                                                                       |
| CMAFT       | 71100000000000000000000000000000000000                                                                |
| CHAFT       | 0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0                                                               |
| CL AFT      | 00000000000000000000000000000000000000                                                                |
| ¥<br>ن      | 40000000000000000000000000000000000000                                                                |
| CO          | - COCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOC                                                             |
| บี          |                                                                                                       |
| Γ¥Ĵ         | 00000000000000000000000000000000000000                                                                |
| C (0+F)     | 9 × × × × × × × × × × × × × × × × × × ×                                                               |
| CL.7        | 00000000000000000000000000000000000000                                                                |
| ALPHA       | 0 C 0 0 7 C 0 0 C 0 0 0 C 0 0 0 C 0 0 0 C 0 0 0 0 C 0 0 0 0 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| 8<br>2      | - V W W W W W W W W<br>                                                                               |
| MACH        | , , , , , , , , , , , , , , , , , , ,                                                                 |

. . . . . . . .

4

28

| HT  | VT      | $\phi_t$           | M   | $C_{D, tails}$ |
|-----|---------|--------------------|-----|----------------|
| Mid | Forward | 0                  | 0.6 | 0.0032         |
|     |         |                    | .9  | .0031          |
|     |         |                    | 1.2 | .0092          |
|     | Mid     | 0                  | 0.6 | 0.0033         |
|     |         |                    | .9  | .0032          |
|     |         |                    | 1.2 | .0095          |
| Aft | Forward | 0                  | 0.6 | 0.0033         |
|     |         |                    | .9  | .0032          |
|     |         |                    | 1.2 | .0093          |
|     | Mid     | -10, 0, 10, and 20 | 0.6 | 0.0034         |
|     |         |                    | .9  | .0033          |
|     |         |                    | 1.2 | .0095          |
|     | Aft     | 0                  | 0.6 | 0.0035         |
|     |         |                    | .9  | .0034          |
|     |         |                    | 1.2 | .0097          |

### TABLE 18. TAIL DRAG COEFFICIENTS

- - -

I

:

l

٩

|



## ORIGHNAL PAGE IS OF POOR QUALITY



Figure 2. Aircraft model.

L-82-1375 

(b) Vertical tails canted  $20^{\circ}$ .

Figure 2. Continued.

ORIGINAL PAGE IS

ORIGINAL PAGE IS OF POOR QUALITY



Figure 2. Concluded.





; 

i


Figure 4. Location of horizontal and vertical tails.





I

I

1





I

i

i I

i I

I

-----









Ì

1

ł

(a) Static performance.

Figure 9. Nozzle characteristics.



 $|^{r}$ 



Figure 9. Continued.



ł

i

ł

(c) Scheduled nozzle pressure ratios.

Figure 9. Concluded.



Figure 10. Effect of vertical tail position on afterbody aerodynamic characteristics for horizontal tails mid,  $\phi_t = 0^\circ$ , and  $\alpha = 0^\circ$ .



(b) M = 0.90.

Figure 10. Continued.

n.



(c) M = 1.20.

Figure 10. Concluded.



(a) M = 0.60.

Figure 11. Effect of vertical tail position on afterbody aerodynamic characteristics for horizontal tails aft,  $\phi_t = 0^\circ$ , and  $\alpha = 0^\circ$ .



------

\_ \_

(b) M = 0.90.

Figure 11. Continued.



(c) M = 1.20.

Figure 11. Concluded.



(a) M = 0.60.

Figure 12. Effect of vertical tail cant angle on afterbody aerodynamic characteristics for horizontal tails aft, vertical tails mid, and  $\alpha = 0^{\circ}$ .



ļ

ţ

(b) M = 0.90.

Figure 12. Continued.



(c) M = 1.20.

Figure 12. Concluded.





1 --

,

1

Ì

I

(a) M = 0.60; NPR = 1.0.

 $\mathbf{52}$ 

Figure 13. Continued.

(b) M = 0.60; NPR = 3.5.





Figure 13. Continued.

i

54



Figure 13. Continued.



ىي

(e) M = 1.20; NPR = 1.0. Figure 13. Continued. L









- - - - -

I



Figure 14. Continued.

(b) M = 0.60; NPR = 3.5.



ىتى

Figure 14. Continued.

| | | |



Figure 14. Continued.

(d) M = 0.90; NPR = 5.0.



لى

Figure 14. Continued.

T T



Figure 14. Concluded.





I

l i i

> i 1

.032 .028 ф Q Q .024 .020 ¤δ ð .016 പ .012 (b) M = 0.60; NPR = 3.5. R .008 30  $\diamond$ • <sup>4</sup>, <sup>deg</sup> 0 -10 20 20 20 .004 0 12 80 Q œ 800 a, deg 4 ÌO 30 0 ণ্ঠ প্ৰেৰ্ -.06 L -4 . 14 . 12 DI . .08 8 0 -.02 -. 64 8 .04 ىر

Figure 15. Continued.



Figure 15. Continued.

i



\_

Figure 15. Continued.

- - -



L

i T

(e) M = 1.20; NPR = 1.0.





Figure 15. Concluded.



ł

Figure 16. Summary of effect of empennage location on total aft-end drag coefficient at  $C_L = 0$  for scheduled NPR.  $\phi_t = 0^\circ$ .


Figure 17. Summary of effect of empennage location on individual interference drag increments at  $C_L = 0$  for scheduled NPR.  $\phi_t = 0^\circ$ .

Vertical tails

---- Forward



Figure 18. Effect of vertical tail position on individual interference drag increments for horizontal tails mid,  $\phi_t = 0^\circ$ , and  $\alpha = 0^\circ$ .



Figure 19. Effect of vertical tail position on individual interference drag increments for horizontal tails aft,  $\phi_t = 0^\circ$ , and  $\alpha = 0^\circ$ .

## 73







\_\_\_\_\_

Figure 21. Summary of effect of vertical tail cant angle on total aft-end zero-lift drag coefficient for scheduled NPR, horizontal tails aft, and vertical tails mid.



75



1

L

.

Figure 22. Effect of vertical tail cant angle on individual interference drag increments for horizontal tails aft, vertical tails mid,  $\phi_t = 0^\circ$ , and  $\alpha = 0^\circ$ .

| 4. This and Subside       5. Report Date         EFFECTS OF EMPENNAGE SURFACE LOCATION       5. Report Date         CON AERODYNAMIC CHARACTERISTICS OF A TWIN.       6. Performing Organization Code         NOZZLES       50-543-90-07         7. Autor(e)       6. Performing Organization Report No.         Francis J. Capone and George T. Carson, Jr.       5. Performing Organization Report No.         NASA Langle Research Center       10. Work Unit No.         Hampton, VA 23665       11. Contract or Grant No.         12. Sponsoring Agency Name and Address       13. Type of Report and Period Covered         Technical Paper       14. Sponsoring Agency Code         15. Supplementary Notes       14. Sponsoring Agency Code         16. Abstract       An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of empenage surface location and vertical tail cant angle on the aft-end aerodynamic characteristics of a twin- engine fighter-type configuration. The configuration featured two different empenage locations that included two horizontal and three vertical tail cont dach numbers from 0.60 to 1.20 and at angles of attack from -3         to 9. Nozzle pressure ratio was varied from jet of to approximately 0, depending upon Mach number. Tail interference effects were present throughout the range of Mach numbers tested and were found to be either favorable or adverse, depending upon test condition and model configuration. At a Mach number. Tail adverse interference effects accounted for a significant precording outonal taft-end drag with tails-off than a         simi                                                                                                                                                                                                                                                                                                                                          | 1. Report No.<br>NASA TP-2392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2. Governme | ent Accession No.              | 3. Recipient's Ca               | talog No.             |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------|---------------------------------|-----------------------|--|
| EFFECTS OF EMPENNAGE SURFACE LOCATION<br>ON AERODYNAMIC CHARACTERISTICS OF A TWIN-<br>ENGINE AFTERBODY MODEL WITH NONAXISYMMETRIC       February 1985         ENGINE AFTERBODY MODEL WITH NONAXISYMMETRIC       6. Performing Organization Code         Notation of the second | 4. Title and Subtitle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1           |                                | 5. Report Date                  |                       |  |
| ON AERODVNAMIC CHARACTERISTICS OF A TWIN-<br>ENGINE AFTERBODY MODEL WITH NONAXISYMMETRIC       February 1985         COZZLES       6. Performing Organisation Code<br>505-43-90-07         7. Author(s)       8. Performing Organisation Report No.<br>L-15825         9. Performing Organization Name and Address       10. Work Unit No.<br>NASA Langley Research Center         Hampton, VA 23665       11. Contract or Grant No.         12. Sponsoring Agency Name and Address       13. Type of Report and Period Covered         National Aeronautics and Space Administration       Technical Paper         Washington, DC 20546       14. Sponsoring Agency Code         13. Supplementary Notes       15. Sponsoring Agency Code         14. Sponsoring Agency Code       14. Sponsoring Agency Code         15. Supplementary Notes       15. Supplementary Notes         16. Abstract.       An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of<br>empennage surface location and vertical tail cant angle on the aft-end aerodynamic characteristics of a twin-<br>engine fighter-type configuration. The configuration frequentiated two-dimensional convergent-divergent nozeles and<br>twin-vertical tails. The investigation was conducted with different empennage locations that included two<br>horizontal and three vertical tail positions. Vertical tail cant angle was varied from -10° to 20° for one selected<br>configuration. Tests were conducted at Mach numbers from 0.60 to 1.20 and at angles of attack from -3°<br>to 9°. Nozzle pressure ratio was varied from percentage of total aft-end darge. Interference effects were                                                                                                                                                                                                                                                                                                            | EFFECTS OF EMPENNAGE SURFACE L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | E have 1095                    |                                 |                       |  |
| ENGINE AFTERBODY MODEL WITH NONAXISYMMETRIC       6. Performing Organization Code<br>505:43:90-07         7. Autor(s)<br>Francis J. Capone and George T. Carson, Jr.       8. Performing Organization Report No.<br>L-15825         9. Performing Organization Name and Address<br>NASA Langley Research Center<br>Hampton, VA 23665       10. Work Unit No.         12. Sponsoring Agency Name and Address<br>National Acconautics and Space Administration<br>Washington, DC 20546       13. Type of Report and Period Covered<br>Technical Paper         13. Supplementary Notes       14. Sponsoring Agency Code       14. Sponsoring Agency Code         15. Supplementary Notes       15. Supplementary Notes       16. Abstract         16. Abstract       An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of<br>empennage surface location and vertical tail cant angle was varied from -10° to 20° for one selected<br>configuration. Tests were conducted at Mach numbers from 0.60 to 1.20 and at angles of attack from -3°<br>to 9°. Nozel pressure ratio was varied from -10° to 20° for one selected<br>configuration. Tests were conducted at Mach numbers from 0.60 to 1.20 and at angles of attack from -3°<br>to 9°. Nozel pressure ratio was varied from percentage of total aft-end drag. Interference effects on<br>the nozele readerse, depending upon test condition and model configuration. At a Mach number of 0.00 to a stark from -3°<br>to 9°. Nozel total aft-end drag. Interference effects on<br>the nozele were generally favorable but became adverse as the horizontal tails were moved from a mid to an<br>aft position with axisymmetric nozeles at Mach numbers of 0.60 and 0.90.         17. Key Words (Suzgested by Authors(s))<br>Tail interference       [48. Distribu                                                                                                                                                          | ON AERODYNAMIC CHARACTERISTIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VIN-        | February 1985                  |                                 |                       |  |
| NO2ZLES     505-43-90-07       7. Aukor(s)     Francis J. Capone and George T. Carson, Jr.     8. Performing Organization Report No.<br>L-15825       9. Performing Organization Name and Address     10. Work Unit No.       NASA Langley Research Center     11. Contract or Grant No.       12. Sponsoring Agency Name and Address     11. Contract or Grant No.       Washington, DC 20546     11. Contract or Grant No.       15. Supplementary Notes     14. Sponsoring Agency Code       16. Abstract     An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of empennage surface location and vertical tail cant angle was varied from -10° to 20° for one selected configuration. The configuration fractured two-dimensional convergent-divergent nozeles and twin-vertical tails. The investigation was conducted with different empennage locations that included two horizontal and three vertical tail positions. Vertical alian cant angle was varied from -10° to 20° for one selected configuration. Tests were conducted at Mach numbers from 0.60 to 1.20 and at angles of attack from -3° to 9°. Nozzle pressure ratio was varied from jet of to approximately 9, depending upon Mach number. Bit defense total aft-end dares (Interference effects were present throughout the range of Mach numbers total aft-end dares. Interference effects on the nozzle were generally favorable but became adverse as the horizontal tail were moved from a mid to an aft position with axisymmetric nozzles at Mach numbers of 0.60 and 0.90.       17. Key Words (Suggested by Authors(o))     118. Distribution Statement       121. Interference     Enclose at Mach numbers of 0.60 and 0.90.       122. Key Wo                                                                                                                                                                                                                                              | ENGINE AFTERBODY MODEL WITH NONAXISYN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | IMETRIC                        | 6. Performing Organization Code |                       |  |
| 7. Autor(s)       8. Performing Organization Report No.         Francis J. Capone and George T. Carson, Jr.       1. L15825         9. Performing Organization Name and Address       10. Work Unit No.         NASA Langley Research Center       11. Contract or Gram No.         12. Sponsoring Agency Name and Address       13. Type of Report and Period Covered         Washington, DC 20546       14. Sponsoring Agency Code         15. Supplementary Notes       15. Supplementary Notes         16. Abstract       The investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of empennage surface location and vertical tail cant angle on the aft-end aerodynamic characteristics of a twin- engine fighter-type configuration. The configuration featured two-dimensional convergent-divergent nozales and twin-vertical tail solitons. Vertical tail cant angle was varied from -10° to 20° for one selected configuration. Tests were conducted at Mach numbers form 0.60 to 1.20 and at angles of attack from -3° to 9°. Nozale pressure ratio was varied from jet of opportunityly 9, depending upon Mach number of 0.90, adverse interference effects accounted for a significant percentage of total aft-end drag. Interference effects on the nozale were generally favorable but became adverse as the horizontal tails were moved from a mid to an a similar configuration with axisymmetric nozzles at Mach numbers of 0.60 and 0.90.         17. Key Words (Suggested by Authors(s))       14. Distribution Statement.         18. Distribution Statement.       Until February 1987         17. Key Words (Suggested by Authors(s))       14. Distr                                                                                                                                                                                                                                                                                                       | NOZZLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | 505-43-90-07                   |                                 |                       |  |
| Francis J. Capone and George T. Carson, Jr.       L-15825         9. Performing Organization Name and Address       10. Work Unit No.         NASA Langley Research Center       11. Contract or Grant No.         12. Sponsoring Agency Name and Address       13. Type of Report and Period Covered         National Aeronautics and Space Administration       14. Sponsoring Agency Code         15. Supplementary Notes       14. Sponsoring Agency Code         16. Abstract       An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of empenage surface location and vertical tail cant angle on the aft-end acrodynamic characteristics of a twin-engine fighter-type configuration. The configuration featured two-dimensional covergent-divergent nozales and twin-vertical tails. The investigation was conducted with different empenage locations that included two horizontal and three vertical tail positions. Vertical tail cant angle of tatak from -10° to 20° for one selected configuration. Tests were conducted at Mach numbers from 0.060 to 1.20 and at angles of attack from -3° to 9°. Nozale pressure ratio was varied from jet of to approximately 9, depending upon Mach number. Tail interference effects were generally favorable but became adverse as the horizontal tails were moved from and to be either favorable or adverse, depending upon test condition and model configuration. At a Mach number of 0.00, adverse interference effects accounted for a significant percentage of total aft-end drag. Interference effects on the nozales had lower total aft-end drag with tails-off than a similar configuration with nonaxisymmetric nozales at Mach numbers of 0.60 and 0.90.         17. Key Words (Suggested by Authors(s))                                                                                                                                                                                                 | 7. Author(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                | 8. Performing Or                | ganization Report No. |  |
| 9. Performing Organization Name and Address       10. Work Unit No.         NASA Langley Research Center       11. Contract or Grant No.         12. Sponsoring Agency Name and Address       13. Type of Report and Period Covered         National Aeronautics and Space Administration       13. Type of Report and Period Covered         14. Sponsoring Agency Name and Address       14. Sponsoring Agency Code         15. Supplementary Notes       14. Sponsoring Agency Code         16. Abstract       An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of empennage surface location and vertical tail cant angle on the aft-end aerodynamic characteristics of a twin-engine fighter-type configuration. The configuration featured two-dimensional convergent-divergent nozzles and twin-vertical tails. The investigation was conducted with different empennage locations that included two horizontal and three vertical tail positions. Vertical tail cant angle was varied from -10° to 20° for one selected configuration. The configuration sets condition and model configuration. At a Mach number of 0.90, advrese interference effects accounted for a significant percentage of total aft-end drag. Interference effects on the nozele were generally favorable but became advress & generally favorable on an id to an aft position. The configuration with nonaxisymmetric nozzles had lower total aft-end drag with tails-off than a similar configuration with axisymmetric nozzles at Mach numbers of 0.60 and 0.90.         17. Key Words (Suggested by Authors(s))       18. Distribution Statement         19. Security Classif.(of this page)       120. Security Classif.(of this page) <td< td=""><td colspan="2">Francis J. Capone and George T. Carson, Jr.</td><td></td><td>L-15825</td><td>- ·</td></td<>                                                                                                                         | Francis J. Capone and George T. Carson, Jr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                                | L-15825                         | - ·                   |  |
| 9. Performing Organization Name and Address       18. NASA Langley Research Center         Hampton, VA 23665       11. Contract or Grant No.         12. Sponsoring Agency Name and Address       13. Type of Report and Period Covered         Washington, DC 20546       14. Sponsoring Agency Code         15. Supplementary Notes       14. Sponsoring Agency Code         16. Abstract       An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of empennage surface location and vertical tail cant angle on the aft-end aerodynamic characteristics of a win-engine fighter-type configuration. The configuration featured two-dimensional convergent-divergent nozzles and twin-vertical tails. The investigation was conducted with different empennage locations that included two horizontal and three vertical tail positions. Vertical tail cant angle was varied from -10° to 20° for one selected configuration. Tests were conducted at Mach numbers from 0.60 to 1.20 and at angles of attack from -3° to 9°. Nozzle pressure ratio was varied from jet off to approximately 9, depending upon Mach number. Tail interference effects were generally favorable but became adverse as the horizontal aft-end drag. Interference effects on a significant percentage of Mach number. Tail aft position. The configuration with nonaxisymmetric nozzles had lower total aft-end drag with tails-off than a similar configuration with axisymmetric nozzles at Mach numbers of 0.60 and 0.90.         17. Key Words (Suggested by Authors(s))       18. Distributiog Statement         Tail interference       Enclose interference         Empemnage location       Thuno favoreloverge for a significant percentage of 0.60 a                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                | 10 Work Unit N                  |                       |  |
| MASA Langley Research Center         Hampton, VA 23665         11. Contract or Grant No.         12. Sponsoring Agency Name and Address         National Aeronautics and Space Administration         Washington, DC 20546         15. Supplementary Notes         16. Abstract         17. Sponsoring Agency Code         18. Supplementary Notes         19. Abstract         10. Abstract         11. Contract or Grant No.         11. Sponsoring Agency Code         13. Supplementary Notes         14. Sponsoring Agency Code         15. Supplementary Notes         16. Abstract         17. May Notes         18. Distribution Statement         19. Optimized States         10. Abstract         10. Abstract         11. Contract or Grant No.         11. Contract or Grant No.         13. Type of Report and Period Covered         14. Sponsoring Agency Code         15. Supplementary Notes         16. Abstract         17. Key Words (Suggested by Authors(s))         18. Distribution Statement         17. Key Words (Suggested by Authors(s))         18. Distribution Statement         19. Security Classifed         17. Key Words (Suggested b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9. Performing Organization Name and Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | 10. WOR One IN                 |                                 |                       |  |
| Hampton, VA 23663       11. Consoring Agency Name and Address         12. Sponsoring Agency Name and Address       13. Type of Report and Period Covered         National Aeronautics and Space Administration       14. Sponsoring Agency Code         15. Supplementary Notes       14. Sponsoring Agency Code         16. Abstract       14. Sponsoring Agency Code         15. Supplementary Notes       14. Sponsoring Agency Code         16. Abstract       14. Sponsoring Agency Code         17. May Supplementary Notes       14. Sponsoring Agency Code         18. Supplementary Notes       14. Sponsoring Agency Code         16. Abstract       15. Supplementary Notes         16. Abstract       16. Abstract         17. Nevertical tail Cart angle on the aft-end aerodynamic characteristics of a twin-<br>engine fighter-type configuration. The configuration featured two-dimensional convergent-divergent nozzles and<br>twin-vertical tail Cart angle of the approximately 9, depending upon Mach numbers from 0.60 to 1.20 and at angles of attack from -3°<br>to 9°. Nozzle pressure ratio was varied from jet off to approximately 9, depending upon Mach number. Tail<br>interference effects accounted for a significant percentage of total aft-end drag. Interference effects accounted for a significant percentage of total aft-end drag. Interference effects accounted for a significant percentage of total aft-end drag. Mit tails-off than a<br>similar configuration with nonaxisymmetric nozzles at Mach numbers of 0.60 and 0.90.         17. Key Words (Suggested by Authors(s))<br>Tail interference effects       18. Distributi                                                                                                                                                                                                                                                                                                                                                  | NASA Langley Research Center                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                | 11 Contract on C                | Innat No              |  |
| 12. Sponsoring Agency Name and Address       13. Type of Report and Period Covered         12. Sponsoring Agency Name and Address       13. Type of Report and Period Covered         Washington, DC 20546       14. Sponsoring Agency Code         15. Supplementary Notes       14. Sponsoring Agency Code         16. Abstract       An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of empennage surface location and vertical tail cant angle on the aft-end aerodynamic characteristics of a twinengine fighter-type configuration. The configuration featured two-dimensional convergent-divergent nozzles and twin-vertical tails. The investigation was conducted with different empennage locations that included two horizontal and three vertical tail positions. Vertical tail cant angle was varied from -10° to 20° for one selected configuration. Tests were conducted at Mach numbers from 0.60 to 1.20 and at angles of attack from -3° to 9°. Nozzle pressure ratio was varied from jet off to approximately 9, depending upon Mach number. Tail interference effects were present throughout the range of Mach numbers to 1.20 and at angles of attack from -0.90, adverse interference effects accounted for a significant percentage of total aft-end drag. Interference effects on the nozzle were generally favorable but became adverse as the horizontal tails were moved from a mid to an atf position. The configuration with nonaxisymmetric nozzles had lower total aft-end drag with tails-off than a similar configuration with nonaxisymmetric nozzles had lower total aft-end drag with tails-off than a similar configuration with axisymmetric nozzles at Mach numbers of 0.60 and 0.90.         17. Key Words (Suggested by Authors(s))       18. Distribution Statement         T                                                                                                                                                  | nampton, VA 23005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                | 11. Contract of Grant No.       |                       |  |
| 12. Sponsoring Agency Name and Address       Technical Paper         National Aeronautics and Space Administration       Technical Paper         14. Sponsoring Agency Code       14. Sponsoring Agency Code         15. Supplementary Notes       14. Sponsoring Agency Code         16. Abstract       An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of empennage surface location and vertical tail cant angle on the aft-end aerodynamic characteristics of a twinengine fighter-type configuration. The configuration featured two-dimensional convergent-divergent nozzles and twin-vertical tail and three vertical tail positions. Vertical tail cant angle on the aft-end aerodynamic characteristics of a twinengine fighter-type configuration was conducted with different empennage locations that included two horizontal and three vertical tail positions. Vertical tail cant angle was varied from -10° to 20° for one selected configuration. Tests were conducted at Mach numbers from 0.60 to 1.20 and at angles of attack from -3° to 9°. Nozzle pressure ratio was varied from jet off to approximately 9, depending upon Mach number. Tail interference effects accounted for a significant percentage of total aft-end drag. Interference effects accounted for a significant percentage of total aft-end drag. Interference effects are upper to nozzles at Mach numbers of 0.60 and 0.90.         17. Key Words (Suggested by Authors(s))       18. Distribution Statement.         Tail interference       Empennage location         Twin noise       Mach numbers of 0.60 and 0.90.         19. Security Classif.(of this report)       20. Security Classif.(of this page)       21. No. of Page                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                | 13. Type of Repo                | rt and Period Covered |  |
| National Aeronautics and Space Administration       International Aeronautics and Space Administration         Washington, DC 20546       It. Sponsoring Agency Code         15. Supplementary Notes       It. Sponsoring Agency Code         16. Abstract       An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of empennage surface location and vertical tail cant angle on the aft-end aerodynamic characteristics of a twin-engine fighter-type configuration. The configuration featured two-dimensional convergent-divergent nozzles and twin-vertical tails. The investigation was conducted with different empennage locations that included two horizontal and three vertical tail positions. Vertical tail cant angle on the 30° for one selected configuration. Tests were conducted at Mach numbers from 0.60 to 1.20 and at angles of attack from -3° to 9°. Nozzle pressure ratio was varied from jet off to approximately 9, depending upon Mach number. Tail interference effects were present throughout the range of Mach numbers tested and were found to be either favorable or adverse, depending upon test condition and model configuration. At a Mach number of 0.90, adverse interference effects accounted for a significant percentage of total aft-end drag. Interference effects on the nozales were generally favorable but became adverse as the horizontal atail series moved from a mid to an aft position. The configuration with nonaxisymmetric nozzles had lower total aft-end drag. Interference effects on the nozales had lower total aft-end drag. Interference effects on the nozales at Mach numbers of 0.60 and 0.90.         17. Key Words (Suggested by Authors(s))       It. Distribution Statement total aft-end drag. Interference effects on the nonaxisymmetric nozzles had lower total aft-end drag. Interference for the nozide                                                                                     | 12. Sponsoring Agency Name and Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | Technical Paper                |                                 |                       |  |
| 14. Sponsoring Agency Code         15. Supplementary Notes         16. Abstract         An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of empennage surface location and vertical tail cant angle on the aft-end aerodynamic characteristics of a twin-engine fighter-type configuration. The configuration featured two-dimensional convergent-divergent nozzles and twin-vertical tails. The investigation was conducted with different empennage locations that included two horizontal and three vertical tail positions. Vertical tail cant angle was varied from -10° to 20° for one selected configuration. Tests were conducted at Mach numbers from 0.60 to 1.20 and at angles of attack from -3° to 9°. Nozzle pressure ratio was varied from jet off to approximately 9, depending upon Mach number. Tail interference effects accounted for a significant percentage of total aft-end drag. Interference effects on the nozzle were generally favorable but became adverse as the horizontal tails were moved from a mid to an aft position. The configuration with nonaxisymmetric nozzles at Mach numbers of 0.60 and 0.90.         17. Key Words (Suggested by Authors(s))       18. Distribution Statement         Tail interference       Empennage location         Twin noise       Mach numbers of 0.60 and 0.90.         18. Nonaxisymmetric nozzles       18. Distribution Statement         19. Security Classified       20. Security Classified (of this page)       21. No. of Page       22. Price         19. Security Classified       10. Security Classified       77       20. Price       20. Security Classified       21. No. of Page                                                                                                                                                                                                                                                                                                 | National Aeronautics and Space Administration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | Technical Taper                |                                 |                       |  |
| 13. Supplementary Notes         16. Abstract         An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of empennage surface location and vertical tail cant angle on the aft-end aerodynamic characteristics of a twin-engine fighter-type configuration. The configuration featured two-dimensional convergent-divergent nozzles and twin-vertical tails. The investigations was conducted with different empennage locations that included two horizontal and three vertical tail positions. Vertical tail cant angle was varied from -10° to 20° for one selected configuration. Tests were conducted at Mach numbers from 0.60 to 1.20 and at angles of attack from -3° to 9°. Nozzle pressure ratio was varied from jet off to approximately 9, depending upon Mach number. Tail interference effects were present throughout the range of Mach numbers tested and were found to be either favorable or adverse, depending upon test condition and model configuration. At a Mach number of 0.90, adverse interference effects accounted for a significant percentage of total aft-end drag. Interference effects on the nozile were generally favorable but became adverse as the horizontal tails were moved from a mid to an aft position. The configuration with nonaxisymmetric nozzles at Mach numbers of 0.60 and 0.90.         17. Key Words (Suggested by Authors(s))       18. Distribution Statement         Tail interference       Empennage location         Twin noise       Mach numbers of 0.60 and 0.90.         19. Security Classified       20. Security Classified (of this page)       12. No. of Page       22. Price         Unclassified       77                                                                                                                                                                                                                                                                                            | Washington, DC 20546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | 14. Sponsoring Agency Code     |                                 | gency Code            |  |
| 16. Abstract         An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of empenage surface location and vertical tail cant angle on the aft-end aerodynamic characteristics of a twin- engine fighter-type configuration. The configuration featured two-dimensional convergent-divergent nozzles and twin-vertical tails. The investigation was conducted with different empenage locations that included two horizontal and three vertical tail positions. Vertical tail cant angle was varied from -10° to 20° for one selected configuration. Tests were conducted at Mach numbers from 0.60 to 1.20 and at angles of attack from -3° to 9°. Nozzle pressure ratio was varied from jet off to approximately 9, depending upon Mach number. Tail interference effects were present throughout the range of Mach numbers tested and were found to be either favorable or adverse, depending upon test condition and model configuration. At a Mach number of 0.90, adverse interference effects accounted for a significant percentage of total aft-end drag. Interference effects on the nozzle were generally favorable but became adverse as the horizontal tails were moved from a mid to an aft position. The configuration with nonaxisymmetric nozzles had lower total aft-end drag with tails-off than a similar configuration with axisymmetric nozzles at Mach numbers of 0.60 and 0.90.         17. Key Words (Suggested by Authors(s)) Tail interference Empenage location Twin noise Afterbody drag Nonaxisymmetric nozzles       18. Distribution Statement Until February 1987         19. Security Classif.(of this report)       20. Security Classif.(of this page)       21. No. of Pages       22. Price         19. Security Classified       77       77       77                                                                                                                                                                                   | 15. Supplementary Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                                |                                 |                       |  |
| 17. Key Words (Suggested by Authors(s))       18. Distribution Statement         Tail interference       Until February 1987         Empenage location       Until February 1987         Twin noise       Subject Category 02         Afterbody drag       Subject Category 02         19. Security Classif.(of this report)       20. Security Classif.(of this page)       21. No. of Pages       22. Price         Unclassified       77       77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16. Abstract<br>An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of<br>empenage surface location and vertical tail cant angle on the aft-end aerodynamic characteristics of a twin-<br>engine fighter-type configuration. The configuration featured two-dimensional convergent-divergent nozzles and<br>twin-vertical tails. The investigation was conducted with different empenage locations that included two<br>horizontal and three vertical tail positions. Vertical tail cant angle was varied from $-10^{\circ}$ to $20^{\circ}$ for one selected<br>configuration. Tests were conducted at Mach numbers from 0.60 to 1.20 and at angles of attack from $-3^{\circ}$<br>to $9^{\circ}$ . Nozzle pressure ratio was varied from jet off to approximately 9, depending upon Mach number. Tail<br>interference effects were present throughout the range of Mach numbers tested and were found to be either<br>favorable or adverse, depending upon test condition and model configuration. At a Mach number of 0.90,<br>adverse interference effects accounted for a significant percentage of total aft-end drag. Interference effects on<br>the nozzle were generally favorable but became adverse as the horizontal tails were moved from a mid to an<br>aft position. The configuration with nonaxisymmetric nozzles had lower total aft-end drag with tails-off than a<br>similar configuration with axisymmetric nozzles at Mach numbers of 0.60 and 0.90. |             |                                |                                 |                       |  |
| Tail interference         Empenage location         Twin noise         Afterbody drag         Nonaxisymmetric nozzles         19. Security Classif.(of this report)         Unclassified         20. Security Classif.(of this page)         Unclassified         21. No. of Pages         22. Price         Unclassified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17. Key Words (Suggested by Authors(s)) 18. Distribution Statement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                                |                                 |                       |  |
| Emperinage location       Until February 1987         Twin noise       Afterbody drag         Afterbody drag       Subject Category 02         19. Security Classif.(of this report)       20. Security Classif.(of this page)       21. No. of Pages       22. Price         Unclassified       Tr       Trice       Trice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tall Interference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                |                                 |                       |  |
| Afterbody drag<br>Nonaxisymmetric nozzles       Subject Category 02         19. Security Classif.(of this report)<br>Unclassified       20. Security Classif.(of this page)<br>Unclassified       21. No. of Pages<br>77       22. Price                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Twin noise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | Until February 19              | 87                              |                       |  |
| Nonaxisymmetric nozzles     Subject Category 02       19. Security Classif.(of this report)     20. Security Classif.(of this page)     21. No. of Pages     22. Price       Unclassified     77     77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Afterbody drag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                |                                 |                       |  |
| Subject Category 02       19. Security Classif.(of this report)     20. Security Classif.(of this page)     21. No. of Pages     22. Price       Unclassified     77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Nonaxisymmetric morely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                |                                 |                       |  |
| 19. Security Classif.(of this report)20. Security Classif.(of this page)21. No. of Pages22. PriceUnclassified77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.010215ymmetric nozzies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                | Subject                         | Category 02           |  |
| 13. Occurity Classified       20. Security Classified       21. No. of Pages       22. Price         Unclassified       77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 Security Classif (of this and )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00 0        |                                |                                 | 00 D :                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unclassified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unclassif   | orassin. (of this page)<br>led | 21. No. of Pages <b>77</b>      | 22. Frice             |  |

-----

į