183 research outputs found

    Breakdown of Hydrodynamics in the Classical ID Heisenberg Model

    Get PDF
    Extensive spin‐dynamics simulations have been performed to study the dynamical behavior of the classical Heisenberg chain at infinite temperatures and long wavelengths. We find that the energy and spin show distinctly different dynamics in the isotropic system. The energy correlation function follows the classical diffusion theory prediction, namely, it decays exponentially with q 2 t. In contrast, the spin correlation function is found to decay exponentially as q 2.12 t ln t implying a logarithmically divergent diffusion constant and the failure of the usual hydrodynamic assumptions

    Self-Consistent Born Approximation for the Hole Motion in the Three-Band Model: a Comparison with Photoemission Experiments

    Get PDF
    The dispersion relation of the single hole in the CuO2 plane is calculated in the self-consistent Born approximation for the three-band Hamiltonian. We find that direct oxygen-oxygen hopping removes the strong anisotropy of the hole spectrum around the band minima. Our results compare well with recent photoemission measurements of the single-hole dispersion relation in Sr2CuO2Cl2

    Hole motion in the Ising antiferromagnet: an application of the recursion method

    Full text link
    We study hole motion in the Ising antiferromagnet using the recursion method. Using the retraceable path approximation we find the hole's Green's function as well as its wavefunction for arbitrary values of t/Jzt/J_z. The effect of small transverse interaction also is taken into account. Our results provide some additional insight into the self-consistent Born approximation.Comment: 8 pages, RevTex, no figures. Accepted for publication in Phys.Rev.

    Depth-dependent critical behavior in V2H

    Get PDF
    Using X-ray diffuse scattering, we investigate the critical behavior of an order-disorder phase transition in a defective "skin-layer" of V2H. In the skin-layer, there exist walls of dislocation lines oriented normal to the surface. The density of dislocation lines within a wall decreases continuously with depth. We find that, because of this inhomogeneous distribution of defects, the transition effectively occurs at a depth-dependent local critical temperature. A depth-dependent scaling law is proposed to describe the corresponding critical ordering behavior.Comment: 5 pages, 4 figure

    Depth-dependent ordering, two-length-scale phenomena and crossover behavior in a crystal featuring a skin-layer with defects

    Get PDF
    Structural defects in a crystal are responsible for the "two length-scale" behavior, in which a sharp central peak is superimposed over a broad peak in critical diffuse X-ray scattering. We have previously measured the scaling behavior of the central peak by scattering from a near-surface region of a V2H crystal, which has a first-order transition in the bulk. As the temperature is lowered toward the critical temperature, a crossover in critical behavior is seen, with the temperature range nearest to the critical point being characterized by mean field exponents. Near the transition, a small two-phase coexistence region is observed. The values of transition and crossover temperatures decay with depth. An explanation of these experimental results is here proposed by means of a theory in which edge dislocations in the near-surface region occur in walls oriented in the two directions normal to the surface. The strain caused by the dislocation lines causes the ordering in the crystal to occur as growth of roughly cylindrically shaped regions. After the regions have reached a certain size, the crossover in the critical behavior occurs, and mean field behavior prevails. At a still lower temperature, the rest of the material between the cylindrical regions orders via a weak first-order transition.Comment: 12 pages, 8 figure

    Braided Rivers and Superconducting Vortex Avalanches

    Full text link
    Magnetic vortices intermittently flow through preferred channels when they are forced in or out of a superconductor. We study this behavior using a cellular model, and find that the vortex flow can make braided rivers strikingly similar to aerial photographs of braided fluvial rivers, such as the Brahmaputra. By developing an analysis technique suitable for characterizing a self-affine (multi)fractal, the scaling properties of the braided vortex rivers in the model are compared with those of braided fluvial rivers. We suggest that avalanche dynamics leads to braiding in both cases.Comment: 4 pages, 3 figures. To appear in PR

    Excitation energies of superdeformed states in 196Pb: towards a systematic study of the second well in Pb isotopes

    No full text
    The excitation energy of the lowest-energy superdeformed band in 196Pb is established using the techniques of time-correlated γ-ray spectroscopy. Together with previous measurements on 192Pb and 194Pb, this result allows superdeformed excitation energies, binding energies, and two-proton and two-neutron separation energies to be studied systematically, providing stringent tests for current nuclear models. The results are examined for evidence of a “superdeformed shell gap.

    Skeeter Buster: A Stochastic, Spatially Explicit Modeling Tool for Studying Aedes aegypti Population Replacement and Population Suppression Strategies

    Get PDF
    Dengue is a viral disease that affects approximately 50 million people annually, and is estimated to result in 12,500 fatalities. Dengue viruses are vectored by mosquitoes, predominantly by the species Aedes aegypti. Because there is currently no vaccine or specific treatment, the only available strategy to reduce dengue transmission is to control the populations of these mosquitoes. This can be achieved by traditional approaches such as insecticides, or by recently developed genetic methods that propose the release of mosquitoes genetically engineered to be unable to transmit dengue viruses. The expected outcome of different control strategies can be compared by simulating the population dynamics and genetics of mosquitoes at a given location. Development of optimal control strategies can then be guided by the modeling approach. To that end, we introduce a new modeling tool called Skeeter Buster. This model describes the dynamics and the genetics of Ae. aegypti populations at a very fine scale, simulating the contents of individual houses, and even the individual water-holding containers in which mosquito larvae reside. Skeeter Buster can be used to compare the predicted outcomes of multiple control strategies, traditional or genetic, making it an important tool in the fight against dengue
    corecore