26 research outputs found

    A dwarf elephant and a rock mouse on Naxos (Cyclades, Greece) with a revision of the palaeozoogeography of the Cycladic Islands (Greece)during the Pleistocene

    Get PDF
    During the Late Pleistocene, Naxos and adjacent areas, including Delos and Paros, constituted a mega-island, here referred to as palaeo-Cyclades. The extensive low-lying plainswith lakes and rivers provided a suitable habitat for elephants. Due to long-term isolation from the mainland and mainland populations, these elephants evolved miniature size. The species found on Naxos had a body size of about ten percent of that of the mainland ancestor, Palaeoloxodon antiquus. During the glacial periods of the Late Pleistocene, P. antiquus may have migrated eastwards and southwards in search of better conditions and reached the islands. The dwarf species of the various Southern Aegean islands (e.g. Crete, Tilos, Rhodos, palaeo-Cyclades) are each the result of independent colonisation events. The very small size of the Naxos species respective to the dwarf elephants from Crete is explained as due to the lack of competitors. The only other elements of the contemporaneous fauna were a rock mouse (Apodemus cf. mystacinus) and a shrew (Crocidura sp.). Submergence of the area, climate change, volcanism, hunting by humans or a combination of these factors during the terminal Pleistocene may have caused the extinction of this endemic fauna

    The effect of area and isolation on insular dwarf proboscideans

    Get PDF
    Aim We investigated the hypothesis that insular body size of fossil elephants is directly related to isolation and surface area of the focal islands. Location Palaeo-islands worldwide. Methods We assembled data on the geographical characteristics (area and isolation) of islands and body size evolution of palaeo-insular species for 22 insular species of fossil elephants across 17 islands. Results Our results support the generality of the island rule in the sense that all but one of the elephants experienced dwarfism on islands. The smallest islands generally harbour the smallest elephants. We found no support for the hypothesis that body size of elephants declines with island isolation. Body size is weakly and positively correlated with island area for proboscideans as a whole, but more strongly correlated for Stegodontidae when considered separately. Average body size decrease is much higher when competitors are present. Main conclusions Body size in insular elephants is not significantly correlated with the isolation of an island. Surface area, however, is a significant predictor of body size. The correlation is positive but relatively weak; c. 23% of the variation is explained by surface area. Body size variation seems most strongly influenced by ecological interactions with competitors, possibly followed by time in isolation. Elephants exhibited far more extreme cases of dwarfism than extant insular mammals, which is consistent with the substantially more extended period of deep geological time that the selective pressures could act on these insular populations

    Dwarf deer of Crete.

    Get PDF
    26 pages : illustrations (some color), map ; 26 cm.Age-graded fossils of Pleistocene endemic Cretan deer (Candiacervus spp.) reveal unexpectedly high juvenile mortality similar to that reported for extant mainland ruminants, despite the fact that these deer lived in a predator-free environment and became extinct before any plausible date for human arrival. Age profiles show that deer surviving past the fawn stage were relatively long-lived for ruminants, indicating that high juvenile mortality was not an expression of their living a "fast" life. Although the effects on survivorship of such variables as fatal accidents, starvation, and disease are difficult to gauge in extinct taxa, the presence of extreme morphological variability within nominal species/ecomorphs of Candiacervus is consistent with the view that high juvenile mortality can function as a key innovation permitting rapid adaptation in insular contexts

    Of mice and mammoths: generality and antiquity of the island rule

    Get PDF
    ABSTRACT Aim We assessed the generality of the island rule in a database comprising 1593 populations of insular mammals (439 species, including 63 species of fossil mammals), and tested whether observed patterns differed among taxonomic and functional groups. Location Islands world-wide. Methods We measured museum specimens (fossil mammals) and reviewed the literature to compile a database of insular animal body size (S i = mean mass of individuals from an insular population divided by that of individuals from an ancestral or mainland population, M). We used linear regressions to investigate the relationship between S i and M, and ANCOVA to compare trends among taxonomic and functional groups. Results S i was significantly and negatively related to the mass of the ancestral or mainland population across all mammals and within all orders of extant mammals analysed, and across palaeo-insular (considered separately) mammals as well. Insular body size was significantly smaller for bats and insectivores than for the other orders studied here, but significantly larger for mammals that utilized aquatic prey than for those restricted to terrestrial prey. Main conclusions The island rule appears to be a pervasive pattern, exhibited by mammals from a broad range of orders, functional groups and time periods. There remains, however, much scatter about the general trend; this residual variation may be highly informative as it appears consistent with differences among species, islands and environmental characteristics hypothesized to influence body size evolution in general. The more pronounced gigantism and dwarfism of palaeo-insular mammals, in particular, is consistent with a hypothesis that emphasizes the importance of ecological interactions (time in isolation from mammalian predators and competitors was 0.1 to > 1.0 Myr for palaeo-insular mammals, but < 0.01 Myr for extant populations of insular mammals). While ecological displacement may be a major force driving diversification in body size in high-diversity biotas, ecological release in species-poor biotas often results in the convergence of insular mammals on the size of intermediate but absent species

    Innervation patterns of sea otter (Enhydra lutris) mystacial follicle-sinus complexes

    Get PDF
    Sea otters (Enhydra lutris) are the most recent group of mammals to return to the sea, and may exemplify divergent somatosensory tactile systems among mammals. Therefore, we quantified the mystacial vibrissal array of sea otters and histologically processed follicle-sinus complexes (F - SCs) to test the hypotheses that the number of myelinated axons per F - SC is greater than that found for terrestrial mammalian vibrissae and that their organization and microstructure converge with those of pinniped vibrissae. A mean of 120.5 vibrissae were arranged rostrally on a broad, blunt muzzle in 7–8 rows and 9–13 columns. The F-SCs of sea otters are tripartite in their organization and similar in microstructure to pinnipeds rather than terrestrial species. Each F-SC was innervated by a mean 1339 ± 408.3 axons. Innervation to the entire mystacial vibrissal array was estimated at 161,313 axons. Our data support the hypothesis that the disproportionate expansion of the coronal gyrus in somatosensory cortex of sea otters is related to the high innervation investment of the mystacial vibrissal array, and that quantifying innervation investment is a good proxy for tactile sensitivity. We predict that the tactile performance of sea otter mystacial vibrissae is comparable to that of harbor seals, sea lions and walruses

    Variations in TcdB Activity and the Hypervirulence of Emerging Strains of Clostridium difficile

    Get PDF
    Hypervirulent strains of Clostridium difficile have emerged over the past decade, increasing the morbidity and mortality of patients infected by this opportunistic pathogen. Recent work suggested the major C. difficile virulence factor, TcdB, from hypervirulent strains (TcdBHV) was more cytotoxic in vitro than TcdB from historical strains (TcdBHIST). The current study investigated the in vivo impact of altered TcdB tropism, and the underlying mechanism responsible for the differences in activity between the two forms of this toxin. A combination of protein sequence analyses, in vivo studies using a Danio rerio model system, and cell entry combined with fluorescence assays were used to define the critical differences between TcdBHV and TcdBHIST. Sequence analysis found that TcdB was the most variable protein expressed from the pathogenicity locus of C. difficile. In line with these sequence differences, the in vivo effects of TcdBHV were found to be substantially broader and more pronounced than those caused by TcdBHIST. The increased toxicity of TcdBHV was related to the toxin's ability to enter cells more rapidly and at an earlier stage in endocytosis than TcdBHIST. The underlying biochemical mechanism for more rapid cell entry was identified in experiments demonstrating that TcdBHV undergoes acid-induced conformational changes at a pH much higher than that of TcdBHIST. Such pH-related conformational changes are known to be the inciting step in membrane insertion and translocation for TcdB. These data provide insight into a critical change in TcdB activity that contributes to the emerging hypervirulence of C. difficile

    Speothos Lund 1839

    No full text
    SPEOTHOS Speothos venaticus is grouped as a sister taxon to Atelocynus (Berta, 1988; Tedford et al., 1995), to Cerdocyon and Atelocynus (Langguth, 1969, 1970) or to Chrysocyon (Wayne et al., 1997). The frontal pole in Speothos and Atelocynus is massive, which is not seen in the other dog-like species (Fig. 7). The proreal gyrus is broad in both, and the coronal sulci create an orthogonal outline, which is similar to Canis. These features clearly distinguish them from all other South American canids, and supports Berta’s (1988) and Tedford et al.’s (1995) hypothesis.Published as part of Lyras, George A. & Van Der Geer, Alexandra A. E., 2003, External brain anatomy in relation to the phylogeny of Caninae (Carnivora: Canidae), pp. 505-522 in Zoological Journal of the Linnean Society 138 (4) on page 519, DOI: 10.1046/j.1096-3642.2003.00067.x, http://zenodo.org/record/543786

    Fossil brains provide evidence of underwater feeding in early seals

    No full text
    Abstract Pinnipeds (seals and related species) use their whiskers to explore their environment and locate their prey. Today they live mostly in marine habitats and are adapted for a highly specialised amphibious lifestyle with their flippers for locomotion and a hydrodynamically streamlined body. The earliest pinnipeds, however, lived on land and in freshwater habitats, much like mustelids today. Here we reconstruct the underwater foraging behaviour of one of these earliest pinnipeds (Potamotherium), focusing in particular on how it used its whiskers (vibrissae). For this purpose, we analyse the coronal gyrus of the brain of 7 fossil and 31 extant carnivorans. This region receives somatosensory input from the head. Our results show that the reliance on whiskers in modern pinnipeds is an ancestral feature that favoured survival of stem pinnipeds in marine habitats. This study provides insights into an impressive ecological transition in carnivoran evolution: from terrestrial to amphibious marine species. Adaptations for underwater foraging were crucial for this transition

    The changing face of the dodo (Aves: Columbidae:Raphus cucullatus): iconography of the Walghvogel of Mauritius

    No full text
    The dodo (Raphus cucullatus) was a large, flightless pigeon endemic to the island of Mauritius (Indian Ocean). Its unusual appearance was recorded in several 17th-century depictions of live or recently killed birds. It became extinct at the end of the 17th century, and in some subsequent accounts, it was even considered as non-existent. Dodo images became rare from the mid-17th century, but its inclusion in Lewis Carroll's Alice's Adventures in Wonderland initiated a change, establishing it as an icon to a much wider public. Since then, illustrations of dodos have been used in all kinds of media, arguably making it the most iconic extinct bird. Here we analyse how the dodo image evolved from 1600 to 2013, using 2D-geometric morphometrics. Our results show that in particular cartoons, animations and logos tend to put an extreme emphasis on the bulging anterior part of the beak, and that the beak is strongly hooked. The variation in dodo images has increased since 1865, culminating in an explosion of shapes during the past decades. The often exaggerated, cartoonesque depiction of the dodo is in line with the long-held but incorrect popular belief that it was a clumsy, tragic bird destined for extinction
    corecore