21 research outputs found

    Critical transition and spatial organization in climate and engineering systems

    Get PDF
    Diese Arbeit zielt darauf ab, die raumzeitlichen Regelmäßigkeiten an Übergängen aufzudecken, die in saisonalen Klima- und Ingenieursystemen beobachtet werden, indem moderne Methoden der komplexen Systemwissenschaft verwendet werden. Das erste System ist der indische Sommermonsun - eine Regenzeit, deren jährliche Schwankungen das Leben und den Wohlstand von mehr als einer Milliarde Menschen auf dem indischen Subkontinent beeinflussen und die Wirtschaft des von der Landwirtschaft abhängigen Landes stark beeinträchtigen. Insbesondere die Kenntnis des zeitlichen Ablaufs des Übergangs vom Vormonsun zum Monsun ist für die Planung landwirtschaftlicher Aktivitäten dringend erforderlich. Die Vorhersage des Monsunzeitpunkts über dem indischen Kontinent bleibt jedoch eine große wissenschaftliche Herausforderung. Das zweite ist ein Verbrennungssystem, das anfällig für ein katastrophales Phänomen namens thermoakustische Instabilität ist, das verhindert, dass das Verbrennungssystem unter klimafreundlichen Bedingungen betrieben wird. Eine solche Brennkammer ist typisch für Energie- und Antriebssysteme wie Gasturbinentriebwerke, Boiler und Raketen. Zu verstehen, wann der Übergang zur thermoakustischen Instabilität auftritt und wie dieser Übergang unterdrückt werden kann, sind Schlüsselfragen für die Entwicklung klimafreundlicher Motoren. Diese Dissertation liefert ein neues Verständnis des indischen Sommermonsuns und der thermoakustischen Instabilität durch auf statistischer Physik basierende Ansätze, die verborgene Merkmale in diesen Systemen nahe ihren jeweiligen Übergängen aufdecken.This thesis aims to reveal the spatiotemporal regularities at transitions observed in seasonal climate and engineering systems by utilizing modern methods of complex systems science. The first system is the Indian Summer Monsoon - a rainy season whose yearly variability affects the life and prosperity of more than a billion people in the Indian subcontinent and strongly impacts the economy of the agriculture-dependent country. In particular, knowledge of the timing of the transition from pre-monsoon to monsoon is greatly needed for the planning of agriculture activities. However, the prediction of monsoon timing over the Indian continent remains a significant scientific challenge. The second is a combustion system prone to a catastrophic phenomenon called thermoacoustic instability, which prevents the combustion system from being operated in climate-friendly conditions. Such a combustor is typical in power and propulsion systems such as gas turbine engines, boilers, and rockets. Understanding when the transition to thermoacoustic instability occurs and how to suppress this transition are key questions for developing climate-friendly engines. This thesis provides a new understanding of the Indian Summer Monsoon and thermoacoustic instability through statistical physics-based approaches that reveal hidden features in these systems near their respective transitions

    Seeds of phase transition to thermoacoustic instability

    Get PDF
    Tackling the problem of emissions is at the forefront of scientific research today. While industrial engines designed to operate in stable regimes produce emissions, attempts to operate them at 'greener' conditions often fail due to a dangerous phenomenon known as thermoacoustic instability. Hazardous high amplitude periodic oscillations during thermoacoustic instability lead to the failure of these engines in power plants, aircraft, and rockets. To prevent this catastrophe in the first place, identifying the onset of thermoacoustic instability is required. However, detecting the onset is a major obstacle preventing further progress due to spatiotemporal variability in the reacting field. Here, we show how to overcome this obstacle by discovering a critical condition in certain zones of the combustor, which indicates the onset of thermoacoustic instability. In particular, we reveal the critical value of the local heat release rate that allows us to distinguish stable operating regimes from hazardous operations. We refer to these zones as seeds of the phase transition because they show the earliest manifestation of the impending instability. The increase in correlations in the heat release rate between these zones indicates the transition from a chaotic state to a periodic state. Remarkably, we found that observations at the seeds of the phase transition enable us to predict when the onset occurs, well before the emergence of dangerous large-amplitude periodic acoustic pressure oscillations. Our results contribute to the operation of combustors in more environment-friendly conditions. The presented approach is applicable to other systems exhibiting such phase transitions.Indian Institute of Technology Madrashttps://doi.org/10.13039/501100003845Federal Ministry for the Environment, Nature Conservation and Nuclear Safety and the International Climate Initiative GermanyDepartment of Science and Technology IndiaRussian Foundation for Basic Researchhttps://doi.org/10.13039/501100002261Peer Reviewe

    Preventing a global transition to thermoacoustic instability by targeting local dynamics

    Get PDF
    The burning of fossil fuels to generate power produces harmful emissions. Lowering such emissions in gas turbine engines is possible by operating them at fuel-lean conditions. However, such strategies often fail because, under fuel-lean conditions, the combustors are prone to catastrophic high-amplitude oscillations known as thermoacoustic instability. We reveal that, as an operating parameter is varied in time, the transition to thermoacoustic instability is initiated at specific spatial regions before it is observed in larger regions of the combustor. We use two indicators to discover such inceptive regions: the growth of variance of fluctuations in spatially resolved heat release rate and its spatiotemporal evolution. In this study, we report experimental evidence of suppression of the global transition to thermoacoustic instability through targeted modification of local dynamics at the inceptive regions. We strategically arrange slots on the flame anchor, which, in turn, reduce the local heat release rate fluctuations at the inceptive regions and thus suppress the global transition to thermoacoustic instability. Our results open new perspectives for combustors that are more environmental-friendly. © 2022, The Author(s)

    Chitohexaose Activates Macrophages by Alternate Pathway through TLR4 and Blocks Endotoxemia

    Get PDF
    Sepsis is a consequence of systemic bacterial infections leading to hyper activation of immune cells by bacterial products resulting in enhanced release of mediators of inflammation. Endotoxin (LPS) is a major component of the outer membrane of Gram negative bacteria and a critical factor in pathogenesis of sepsis. Development of antagonists that inhibit the storm of inflammatory molecules by blocking Toll like receptors (TLR) has been the main stay of research efforts. We report here that a filarial glycoprotein binds to murine macrophages and human monocytes through TLR4 and activates them through alternate pathway and in the process inhibits LPS mediated classical activation which leads to inflammation associated with endotoxemia. The active component of the nematode glycoprotein mediating alternate activation of macrophages was found to be a carbohydrate residue, Chitohexaose. Murine macrophages and human monocytes up regulated Arginase-1 and released high levels of IL-10 when incubated with chitohexaose. Macrophages of C3H/HeJ mice (non-responsive to LPS) failed to get activated by chitohexaose suggesting that a functional TLR4 is critical for alternate activation of macrophages also. Chitohexaose inhibited LPS induced production of inflammatory molecules TNF-α, IL-1β and IL-6 by macropahges in vitro and in vivo in mice. Intraperitoneal injection of chitohexaose completely protected mice against endotoxemia when challenged with a lethal dose of LPS. Furthermore, Chitohexaose was found to reverse LPS induced endotoxemia in mice even 6/24/48 hrs after its onset. Monocytes of subjects with active filarial infection displayed characteristic alternate activation markers and were refractory to LPS mediated inflammatory activation suggesting an interesting possibility of subjects with filarial infections being less prone to develop of endotoxemia. These observations that innate activation of alternate pathway of macrophages by chtx through TLR4 has offered novel opportunities to cell biologists to study two mutually exclusive activation pathways of macrophages being mediated through a single receptor

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Inhibiting the onset of thermoacoustic instability through targeted control of critical regions

    No full text
    This experimental study investigates the dynamical transition from stable operation to thermoacoustic instability in a turbulent bluff-body stabilised dump combustor. We conduct experiments to acquire acoustic pressure and local heat release rate fluctuations and use them to characterise this transition as we decrease the equivalence ratio towards a fuel-lean setting. More importantly, we observe a significant increase in local heat release rate fluctuations at critical locations well before thermoacoustic instability occurs. One of these critical locations is the stagnation zone in front of the bluff-body. By strategically positioning slots (perforations) on the bluff-body, we ensure the reduction of the growth of local heat release rate fluctuations at the stagnation zone near the bluff-body well before the onset of thermoacoustic instability. We show that this reduction in local heat release rate fluctuations inhibits the transition to thermoacoustic instability. We find that modified configurations of the bluff-body that do not quench the local heat release rate fluctuations at the stagnation zone result in the transition to thermoacoustic instability. We also reveal that an effective suppression strategy based on the growth of local heat release rate fluctuations requires an optimisation of the slots' area-ratio for a given bluff-body position. Further, the suppression strategy also depends on the spatial distribution of perforations on the bluff-body. Notably, an inappropriate distribution of the slots, which does not quench the local heat release rate fluctuations at the stagnation zone but creates new critical regions, may even result in a dramatic increase in the amplitudes of pressure oscillations

    Studies on reconstruction of large skin defects following mammary tumor excision in dogs

    No full text
    Aim: The main objective of the study was to describe the use of skin fold advancement flaps (SFAFs) and other reconstructive techniques for closure of large skin defects following mammary tumor excision in dogs. Materials and Methods: Twelve dogs underwent reconstruction of large ventral skin defects following mammary tumor excision with wide margins. Skin fold flaps (flank fold flap and elbow fold flap) were elevated from the flank and elbow region, respectively, and transposed and sutured onto the large ventral skin defect following mastectomy in all the dogs. In addition to the skin fold flaps, other reconstructive techniques such as undermining, walking sutures, and tension-relieving suture techniques were followed during surgery in the closure of large skin defects without skin tension and compromising limb mobility. The skin flap viability was assessed subjectively by gross observation of the flap such as color, temperature, capillary perfusion, and cosmetic appearance, and scoring (1-4) was done. Tissue samples were collected from a surgical site on days 3, 6, and 12 post-operatively for histopathological evaluation and healing status of the skin flap. Results: All the surgical wounds healed primarily, without any major complications and the skin flap remained healthy throughout the healing process post-operatively. Distal flap necrosis was noticed in one case and necrosis of skin flap between two suture lines was noticed in another case in which the necrotized distal portion healed by secondary intention after 7 days. The mean survival of subdermal plexus flap in the above cases was 98% which was a subjective evaluation based on surface area of the skin defect measured by Image 'J software and the flap dimensions. The average healing of skin flap in days was 14.91±0.86. Conclusion: The SFAFs along with other reconstructive techniques help in the reconstruction of large ventral skin defects following mastectomy in dogs without much compromising limb mobility

    International Nosocomial Infection Control Consortiu (INICC) report, data summary of 43 countries for 2007-2012. Device-associated module

    No full text
    We report the results of an International Nosocomial Infection Control Consortium (INICC) surveillance study from January 2007-December 2012 in 503 intensive care units (ICUs) in Latin America, Asia, Africa, and Europe. During the 6-year study using the Centers for Disease Control and Prevention's (CDC) U.S. National Healthcare Safety Network (NHSN) definitions for device-associated health care–associated infection (DA-HAI), we collected prospective data from 605,310 patients hospitalized in the INICC's ICUs for an aggregate of 3,338,396 days. Although device utilization in the INICC's ICUs was similar to that reported from ICUs in the U.S. in the CDC's NHSN, rates of device-associated nosocomial infection were higher in the ICUs of the INICC hospitals: the pooled rate of central line–associated bloodstream infection in the INICC's ICUs, 4.9 per 1,000 central line days, is nearly 5-fold higher than the 0.9 per 1,000 central line days reported from comparable U.S. ICUs. The overall rate of ventilator-associated pneumonia was also higher (16.8 vs 1.1 per 1,000 ventilator days) as was the rate of catheter-associated urinary tract infection (5.5 vs 1.3 per 1,000 catheter days). Frequencies of resistance of Pseudomonas isolates to amikacin (42.8% vs 10%) and imipenem (42.4% vs 26.1%) and Klebsiella pneumoniae isolates to ceftazidime (71.2% vs 28.8%) and imipenem (19.6% vs 12.8%) were also higher in the INICC's ICUs compared with the ICUs of the CDC's NHSN
    corecore