412 research outputs found

    Collective Evidence for Inverse Compton Emission from External Photons in High-Power Blazars

    Get PDF
    We present the first collective evidence that Fermi-detected jets of high kinetic power (L_kin) are dominated by inverse Compton emission from upscattered external photons. Using a sample with a broad range in orientation angle, including radio galaxies and blazars, we find that very high power sources (L_kin > 10^45.5 erg s^{-1}) show a significant increase in the ratio of inverse Compton to synchrotron power (Compton dominance) with decreasing orientation angle, as measured by the radio core dominance and confirmed by the distribution of superluminal speeds. This increase is consistent with beaming expectations for external Compton (EC) emission, but not for synchrotron self Compton (SSC) emission. For the lowest power jets (L_kin < 10^43.5 erg s^{-1}), no trend between Compton and radio core dominance is found, consistent with SSC. Importantly, the EC trend is not seen for moderately high power flat spectrum radio quasars with strong external photon fields. Coupled with the evidence that jet power is linked to the jet speed (Kharb et al. 2010), this finding suggests that external photon fields become the dominant source of seed photons in the jet comoving frame only for the faster and therefore more powerful jets.Comment: Accepted for Publication in ApJ Letters, 5 pages, 4 figure

    External Compton emission from relativistic jets in Galactic black hole candidates and ultraluminous X-ray sources

    Get PDF
    Galactic binary systems that contain a black hole candidate emit hard X-rays in their low luminosity mode. We show that this emission can be understood as due to the Compton scattering of photons from the companion star and/or the accretion disk by relativistic electrons in a jet. The same electrons are also responsible for the radio emission. Two sources -- XTE J1118+480 and Cygnus X-1 -- are modelled as representatives of black holes with low and high luminosity companion stars respectively. We further show that the ultraluminous compact X-ray sources observed in nearby galaxies have the properties expected of stellar mass black holes with high luminosity companions in which the jet is oriented close to our line of sight.Comment: Submitted to A&A letters, Oct 16, 200

    Chandra Observations of the Radio Galaxy 3C 445 and the Hotspot X-ray Emission Mechanism

    Full text link
    We present new {\it Chandra} observations of the radio galaxy 3C 445, centered on its southern radio hotspot. Our observations detect X-ray emission displaced upstream and to the west of the radio-optical hotspot. Attempting to reproduce both the observed spectral energy distribution (SED) and the displacement, excludes all one zone models. Modeling of the radio-optical hotspot spectrum suggests that the electron distribution has a low energy cutoff or break approximately at the proton rest mass energy. The X-rays could be due to external Compton scattering of the cosmic microwave background (EC/CMB) coming from the fast (Lorentz factor Γ≈4\Gamma\approx 4) part of a decelerating flow, but this requires a small angle between the jet velocity and the observer's line of sight (θ≈14∘\theta\approx 14^{\circ}). Alternatively, the X-ray emission can be synchrotron from a separate population of electrons. This last interpretation does not require the X-ray emission to be beamed.Comment: 9 pages, 5 figures, ApJ, in pres
    • …
    corecore