605 research outputs found

    From syntagmatic to paradigmatic spatial zeroes: the loss of the preposition se in inner Asia Minor Greek

    Get PDF
    We trace the diachronic development of the preposition se in inner Asia Minor Greek from its use to mark a range of spatial functions to its ultimate loss and replacement by zero. We propose that, before spreading to all syntactic and semantic contexts, zero-marking was contextually-dependent on the presence/absence of a prenominal genitive modifying the head noun of Ground-encoding NPs and on the presence/absence of Region-encoding postpositions. We attribute these developments to an informational load relief strategy aimed at producing more economical utterances, as well as to language contact with Turkish, which favored structural convergence on the adpositional level between the two languages

    Minimally Invasive ā€œIPG-Det Techniqueā€ with Autologous CGF and Human Umbilical Cord Blood Derived Mesenchymal Stem Cells towards Posterior Atrophic Maxilla Reconstruction - Case Report

    Get PDF
    Rehabilitation of maxilla in Implant Dentistry, especially in posterior edentulism is primarily treated with large and painful surgical approaches due to residual ridge atrophy and maxillary sinus pneumatization. Sinus Floor Elevation (SFE), especially in its ā€œlateral versionā€ is considered as the ā€œgold-standardā€ for over four decades, despite the well documented post-operative morbidity and complications. As an alternative, the novel protocol named ā€œIPG-DET Techniqueā€ minimally invasive and equally safe-efficient, promotes sinus membrane intentional perforation secured by healing and augmentative potential of autologous concentrated growth factors and CD34-Stem Cells Matrix. This study further investigates the efficiency and healing process of ā€œIPG-DET Techniqueā€ amplified by Mesenchymal Stem Cells clinical use, derived from human Umbilical Cord Blood for posterior atrophic maxilla reconstruction. Preliminary results have shown safe and inductive bone regeneration within sinus cavity. All implants loaded, 4 months after implant placement, showed high primary stability until final fixed prosthetic rehabilitation

    Microbiology and atmospheric processes: Biological, physical and chemical characterization of aerosol particles

    Get PDF
    The interest in bioaerosols has traditionally been linked to health hazards for humans, animals and plants. However, several components of bioaerosols exhibit physical properties of great significance for cloud processes, such as ice nucleation and cloud condensation. To gain a better understanding of their influence on climate, it is therefore important to determine the composition, concentration, seasonal fluctuation, regional diversity and evolution of bioaerosols. In this paper, we will review briefly the existing techniques for detection, quantification, physical and chemical analysis of biological particles, attempting to bridge physical, chemical and biological methods for analysis of biological particles and integrate them with aerosol sampling techniques. We will also explore some emerging spectroscopy techniques for bulk and single-particle analysis that have potential for in-situ physical and chemical analysis. Lastly, we will outline open questions and further desired capabilities (e. g., in-situ, sensitive, both broad and selective, on-line, time-resolved, rapid, versatile, cost-effective techniques) required prior to comprehensive understanding of chemical and physical characterization of bioaerosols

    Real Time Sentiment Change Detection of Twitter Data Streams

    Full text link
    In the past few years, there has been a huge growth in Twitter sentiment analysis having already provided a fair amount of research on sentiment detection of public opinion among Twitter users. Given the fact that Twitter messages are generated constantly with dizzying rates, a huge volume of streaming data is created, thus there is an imperative need for accurate methods for knowledge discovery and mining of this information. Although there exists a plethora of twitter sentiment analysis methods in the recent literature, the researchers have shifted to real-time sentiment identification on twitter streaming data, as expected. A major challenge is to deal with the Big Data challenges arising in Twitter streaming applications concerning both Volume and Velocity. Under this perspective, in this paper, a methodological approach based on open source tools is provided for real-time detection of changes in sentiment that is ultra efficient with respect to both memory consumption and computational cost. This is achieved by iteratively collecting tweets in real time and discarding them immediately after their process. For this purpose, we employ the Lexicon approach for sentiment characterizations, while change detection is achieved through appropriate control charts that do not require historical information. We believe that the proposed methodology provides the trigger for a potential large-scale monitoring of threads in an attempt to discover fake news spread or propaganda efforts in their early stages. Our experimental real-time analysis based on a recent hashtag provides evidence that the proposed approach can detect meaningful sentiment changes across a hashtags lifetime

    Detection of Fake Generated Scientific Abstracts

    Full text link
    The widespread adoption of Large Language Models and publicly available ChatGPT has marked a significant turning point in the integration of Artificial Intelligence into people's everyday lives. The academic community has taken notice of these technological advancements and has expressed concerns regarding the difficulty of discriminating between what is real and what is artificially generated. Thus, researchers have been working on developing effective systems to identify machine-generated text. In this study, we utilize the GPT-3 model to generate scientific paper abstracts through Artificial Intelligence and explore various text representation methods when combined with Machine Learning models with the aim of identifying machine-written text. We analyze the models' performance and address several research questions that rise during the analysis of the results. By conducting this research, we shed light on the capabilities and limitations of Artificial Intelligence generated text

    QoE in IoT: a vision, survey and future directions

    Get PDF
    \ua9 The Author(s) 2021. The rapid evolution of the Internet of Things (IoT) is making way for the development of several IoT applications that require minimal or no human involvement in the data collection, transformation, knowledge extraction, and decision-making (actuation) process. To ensure that such IoT applications (we term them autonomic) function as expected, it is necessary to measure and evaluate their quality, which is challenging in the absence of any human involvement or feedback. Existing Quality of Experience (QoE) literature and most QoE definitions focuses on evaluating application quality from the lens of human receiving application services. However, in autonomic IoT applications, poor quality of decisions and resulting actions can degrade the application quality leading to economic and social losses. In this paper, we present a vision, survey and future directions for QoE research in IoT. We review existing QoE definitions followed by a survey of techniques and approaches in the literature used to evaluate QoE in IoT. We identify and review the role of data from the perspective of IoT architectures, which is a critical factor when evaluating the QoE of IoT applications. We conclude the paper by identifying and presenting our vision for future research in evaluating the QoE of autonomic IoT applications

    A Role for Noncoding Variation in Schizophrenia

    Get PDF
    A large portion of common variant loci associated with genetic risk for schizophrenia reside within noncoding sequence of unknown function. Here, we demonstrate promoter and enhancer enrichment in schizophrenia variants associated with expression quantitative trait loci (eQTL). The enrichment is greater when functional annotations derived from the human brain are used relative to peripheral tissues. Regulatory trait concordance analysis ranked genes within schizophrenia genome-wide significant loci for a potential functional role, based on colocalization of a risk SNP, eQTL, and regulatory element sequence. We identified potential physical interactions of noncontiguous proximal and distal regulatory elements. This was verified in prefrontal cortex and -induced pluripotent stem cell-derived neurons for the L-type calcium channel (CACNA1C) risk locus. Our findings point to a functional link between schizophrenia-associated noncoding SNPs and 3D genome architecture associated with chromosomal loopings and transcriptional regulation in the brain

    The Transcriptomic Response of the Murine Thyroid Gland to Iodide Overload and the Role of the Nrf2 Antioxidant System.

    Get PDF
    Thyroid follicular cells have physiologically high levels of reactive oxygen species because oxidation of iodide is essential for the iodination of thyroglobulin (Tg) during thyroid hormone synthesis. Thyroid follicles (the functional units of the thyroid) also utilize incompletely understood autoregulatory mechanisms to defend against exposure to excess iodide. To date, no transcriptomic studies have investigated these phenomena in vivo. Nuclear erythroid factor 2 like 2 (Nrf2 or Nfe2l2) is a transcription factor that regulates the expression of numerous antioxidant and other cytoprotective genes. We showed previously that the Nrf2 pathway regulates the antioxidant defense of follicular cells, as well as Tg transcription and Tg iodination. We, thus, hypothesized that Nrf2 might be involved in the transcriptional response to iodide overload. C57BL6/J wild-type (WT) or Nrf2 knockout (KO) male mice were administered regular water or water supplemented with 0.05% sodium iodide for seven days. RNA from their thyroids was prepared for next-generation RNA sequencing (RNA-Seq). Gene expression changes were assessed and pathway analyses were performed on the sets of differentially expressed genes. Analysis of differentially expressed messenger RNAs (mRNAs) indicated that iodide overload upregulates inflammatory-, immune-, fibrosis- and oxidative stress-related pathways, including the Nrf2 pathway. Nrf2 KO mice showed a more pronounced inflammatory-autoimmune transcriptional response to iodide than WT mice. Compared to previously published datasets, the response patterns observed in WT mice had strong similarities with the patterns typical of Graves' disease and papillary thyroid carcinoma (PTC). Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) also responded to iodide overload, with the latter targeting mRNAs that participate mainly in inflammation pathways. Iodide overload induces the Nrf2 cytoprotective response and upregulates inflammatory, immune, and fibrosis pathways similar to autoimmune hyperthyroidism (Graves' disease) and PTC
    • ā€¦
    corecore