399 research outputs found

    Traffic event detection framework using social media

    Get PDF
    This is an accepted manuscript of an article published by IEEE in 2017 IEEE International Conference on Smart Grid and Smart Cities (ICSGSC) on 18/09/2017, available online: https://ieeexplore.ieee.org/document/8038595 The accepted version of the publication may differ from the final published version.© 2017 IEEE. Traffic incidents are one of the leading causes of non-recurrent traffic congestions. By detecting these incidents on time, traffic management agencies can activate strategies to ease congestion and travelers can plan their trip by taking into consideration these factors. In recent years, there has been an increasing interest in Twitter because of the real-time nature of its data. Twitter has been used as a way of predicting revenues, accidents, natural disasters, and traffic. This paper proposes a framework for the real-time detection of traffic events using Twitter data. The methodology consists of a text classification algorithm to identify traffic related tweets. These traffic messages are then geolocated and further classified into positive, negative, or neutral class using sentiment analysis. In addition, stress and relaxation strength detection is performed, with the purpose of further analyzing user emotions within the tweet. Future work will be carried out to implement the proposed framework in the West Midlands area, United Kingdom.Published versio

    Synthesizing Training Data for Object Detection in Indoor Scenes

    Full text link
    Detection of objects in cluttered indoor environments is one of the key enabling functionalities for service robots. The best performing object detection approaches in computer vision exploit deep Convolutional Neural Networks (CNN) to simultaneously detect and categorize the objects of interest in cluttered scenes. Training of such models typically requires large amounts of annotated training data which is time consuming and costly to obtain. In this work we explore the ability of using synthetically generated composite images for training state-of-the-art object detectors, especially for object instance detection. We superimpose 2D images of textured object models into images of real environments at variety of locations and scales. Our experiments evaluate different superimposition strategies ranging from purely image-based blending all the way to depth and semantics informed positioning of the object models into real scenes. We demonstrate the effectiveness of these object detector training strategies on two publicly available datasets, the GMU-Kitchens and the Washington RGB-D Scenes v2. As one observation, augmenting some hand-labeled training data with synthetic examples carefully composed onto scenes yields object detectors with comparable performance to using much more hand-labeled data. Broadly, this work charts new opportunities for training detectors for new objects by exploiting existing object model repositories in either a purely automatic fashion or with only a very small number of human-annotated examples.Comment: Added more experiments and link to project webpag

    Modeling and Optimization of Lactic Acid Synthesis by the Alkaline Degradation of Fructose in a Batch Reactor

    Get PDF
    The present work deals with the determination of the optimal operating conditions of lactic acid synthesis by the alkaline degradation of fructose. It is a complex transformation for which detailed knowledge is not available. It is carried out in a batch or semi-batch reactor. The ‘‘Tendency Modeling’’ approach, which consists of the development of an approximate stoichiometric and kinetic model, has been used. An experimental planning method has been utilized as the database for model development. The application of the experimental planning methodology allows comparison between the experimental and model response. The model is then used in an optimization procedure to compute the optimal process. The optimal control problem is converted into a nonlinear programming problem solved using the sequencial quadratic programming procedure coupled with the golden search method. The strategy developed allows simultaneously optimizing the different variables, which may be constrained. The validity of the methodology is illustrated by the determination of the optimal operating conditions of lactic acid production

    Natural ventilation in urban areas : results of the European Project URBVENT Part 1: urban environment

    Get PDF
    The application of natural ventilation is more difficult in urban than in rural environment, especially in street canyons due to reduced wind velocity, urban heat island, noise and pollution, which are considered to be important barriers to the application of natural ventilation. The wind, temperature, noise attenuation and outdoor-indoor pollution transfer were measured in a large range of variation and various types of urban configuration. The models obtained can be used in the initial stages of building design in order to assess the viability of natural ventilation in urban environment, especially in street canyons

    Discriminant incoherent component analysis

    Get PDF
    Face images convey rich information which can be perceived as a superposition of low-complexity components associated with attributes, such as facial identity, expressions, and activation of facial action units (AUs). For instance, low-rank components characterizing neutral facial images are associated with identity, while sparse components capturing non-rigid deformations occurring in certain face regions reveal expressions and AU activations. In this paper, the discriminant incoherent component analysis (DICA) is proposed in order to extract low-complexity components, corresponding to facial attributes, which are mutually incoherent among different classes (e.g., identity, expression, and AU activation) from training data, even in the presence of gross sparse errors. To this end, a suitable optimization problem, involving the minimization of nuclear-and l1 -norm, is solved. Having found an ensemble of class-specific incoherent components by the DICA, an unseen (test) image is expressed as a group-sparse linear combination of these components, where the non-zero coefficients reveal the class(es) of the respective facial attribute(s) that it belongs to. The performance of the DICA is experimentally assessed on both synthetic and real-world data. Emphasis is placed on face analysis tasks, namely, joint face and expression recognition, face recognition under varying percentages of training data corruption, subject-independent expression recognition, and AU detection by conducting experiments on four data sets. The proposed method outperforms all the methods that are compared with all the tasks and experimental settings

    Dynamic behavior analysis via structured rank minimization

    Get PDF
    Human behavior and affect is inherently a dynamic phenomenon involving temporal evolution of patterns manifested through a multiplicity of non-verbal behavioral cues including facial expressions, body postures and gestures, and vocal outbursts. A natural assumption for human behavior modeling is that a continuous-time characterization of behavior is the output of a linear time-invariant system when behavioral cues act as the input (e.g., continuous rather than discrete annotations of dimensional affect). Here we study the learning of such dynamical system under real-world conditions, namely in the presence of noisy behavioral cues descriptors and possibly unreliable annotations by employing structured rank minimization. To this end, a novel structured rank minimization method and its scalable variant are proposed. The generalizability of the proposed framework is demonstrated by conducting experiments on 3 distinct dynamic behavior analysis tasks, namely (i) conflict intensity prediction, (ii) prediction of valence and arousal, and (iii) tracklet matching. The attained results outperform those achieved by other state-of-the-art methods for these tasks and, hence, evidence the robustness and effectiveness of the proposed approach

    Behavior prediction in-the-wild

    Get PDF
    In this paper, the problem of audio-visual behavior prediction in-the-wild is addressed. In this context, both audio-visual descriptors of behavioral cues (features) and continuous-time real-valued characterizations of behavior (annotations) are (possibly) corrupted by non-Gaussian noise of large magnitude. The modeling assumption behind the proposed framework is that naturalistic affect and behavior captured in audio-visual episodes are smoothly-varying dynamic phenomena and thus the hidden temporal dynamics can be modeled as a generative auto-regressive process. Consequently, continuous-time real-valued characterizations of behavior (annotations) are postulated to be outputs of a low-complexity (i.e., low-order) time-invariant Linear Dynamical System (LDS) when descriptors of behavioral cues (features) act as inputs. To learn the parameters of the LDS, a recently proposed spectral method that relies on Hankel-rank minimization is adopted. Experimental evaluation on a challenging database recorded in the wild demonstrate the effectiveness of the proposed approach in behavior prediction

    The conflict escalation resolution (CONFER) database

    Get PDF
    Conflict is usually defined as a high level of disagreement taking place when individuals act on incompatible goals, interests, or intentions. Research in human sciences has recognized conflict as one of the main dimensions along which an interaction is perceived and assessed. Hence, automatic estimation of conflict intensity in naturalistic conversations would be a valuable tool for the advancement of human-centered computing and the deployment of novel applications for social skills enhancement including conflict management and negotiation. However, machine analysis of conflict is still limited to just a few works, partially due to an overall lack of suitable annotated data, while it has been mostly approached as a conflict or (dis)agreement detection problem based on audio features only. In this work, we aim to overcome the aforementioned limitations by a) presenting the Conflict Escalation Resolution (CONFER) Database, a set of excerpts from audiovisual recordings of televised political debates where conflicts naturally arise, and b)reporting baseline experiments on audiovisual conflict intensity estimation. The database contains approximately 142min of recordings in Greek language, split over 120 non-overlapping episodes of naturalistic conversations that involve two or three interactants. Subject- and session-independent experiments are conducted on continuous-time (frame-by-frame) estimation of real-valued conflict intensity, as opposed to binary conflict/non-conflict classification. For the problem at hand, the efficiency of various audio and visual features and fusion of them as well as various regression frameworks is examined. Experimental results suggest that there is much room for improvement in the design and development of automated multi-modal approaches to continuous conflict analysis. The CONFER Database is publicly available for non-commercial use at http://ibug.doc.ic.ac.uk/resources/confer/. The Conflict Escalation Resolution (CONFER) Database is presented.CONFER contains 142min (120 episodes) of recordings in Greek language.Episodes are extracted from TV political debates where conflicts naturally arise.Experiments are the first approach to continuous estimation of conflict intensity.Performance of various audio and visual features and classifiers is evaluated

    Data-driven nonlinear MPC using dynamic response surface methodology

    Get PDF
    For many complex processes, it is desirable to use a nonlinear model in the MPC design, and the recently proposed Dynamic Response Surface Methodology (DRSM) is capable of accurately modeling nonlinear continuous processes over semi-infinite time horizons. We exploit the DRSM to identify nonlinear data-driven dynamic models that are used in an NMPC. We demonstrate the ability and effectiveness of the DRSM data-driven model to be used as the prediction model for a nonlinear MPC regulator. This DRSM model is efficiently used to solve a non-equally-spaced finite-horizon optimal control problem so that the number of decision variables is reduced. The proposed DRSM-based NMPC is tested on a representative nonlinear process, an isothermal CSTR in which a second-order irreversible reaction is taking place. It is shown that the obtained quadratic data-driven model accurately represents the open-loop process dynamics and that DRSM-based NMPC is an effective data-driven implementation of nonlinear MPC

    Robust statistical frontalization of human and animal faces

    Get PDF
    The unconstrained acquisition of facial data in real-world conditions may result in face images with significant pose variations, illumination changes, and occlusions, affecting the performance of facial landmark localization and recognition methods. In this paper, a novel method, robust to pose, illumination variations, and occlusions is proposed for joint face frontalization and landmark localization. Unlike the state-of-the-art methods for landmark localization and pose correction, where large amount of manually annotated images or 3D facial models are required, the proposed method relies on a small set of frontal images only. By observing that the frontal facial image of both humans and animals, is the one having the minimum rank of all different poses, a model which is able to jointly recover the frontalized version of the face as well as the facial landmarks is devised. To this end, a suitable optimization problem is solved, concerning minimization of the nuclear norm (convex surrogate of the rank function) and the matrix ℓ1 norm accounting for occlusions. The proposed method is assessed in frontal view reconstruction of human and animal faces, landmark localization, pose-invariant face recognition, face verification in unconstrained conditions, and video inpainting by conducting experiment on 9 databases. The experimental results demonstrate the effectiveness of the proposed method in comparison to the state-of-the-art methods for the target problems
    corecore