664 research outputs found

    Experimental measurement of breath exit velocity and expirated bloodstain patterns produced under different exhalation mechanisms

    Get PDF
    In an attempt to obtain a deeper understanding of the factors which determine the characteristics of expirated bloodstain patterns, the mechanism of formation of airborne droplets was studied. Hot wire anemometry measured air velocity, 25 mm from the lips, for 31 individuals spitting, coughing and blowing. Expirated stains were produced by the same mechanisms performed by one individual with different volumes of a synthetic blood substitute in their mouth. The atomization of the liquid at the lips was captured with high-speed video, and the resulting stain patterns were captured on paper targets. Peak air velocities varied for blowing (6 to 64 m/s), spitting (1 to 64 m/s) and coughing (1 to 47 m/s), with mean values of 12 m/s (blowing), 7 m/s (spitting) and 4 m/s (coughing). There was a large (55–65%) variation between individuals in air velocity produced, as well as variation between trials for a single individual (25–35%). Spitting and blowing involved similar lip shapes. Blowing had a longer duration of airflow, though it is not the duration but the peak velocity at the beginning of the air motion which appears to control the atomization of blood in the mouth and thus stain formation. Spitting could project quantities of drops at least 1600 mm. Coughing had a shorter range of near 500 mm, with a few droplets travelling further. All mechanisms could spread drops over an angle >45°. Spitting was the most effective for projecting drops of blood from the mouth, due to its combination of chest motion and mouth shape producing strong air velocities. No unique method was found of inferring the physical action (spitting, coughing or blowing) from characteristics of the pattern, except possibly distance travelled. Diameter range in expirated bloodstains varied from very small (<1 mm) in a dense formation to several millimetres. No unique method was found of discriminating expirated patterns from gunshot or impact patterns on stain shape alone. Only 20% of the expirated patterns produced in this study contained identifiable bubble rings or beaded stains

    Infectious Pancreatic Necrosis Virus and its impact on the Irish Salmon Aquaculture and Wild Fish sectors

    Get PDF
    Infectious pancreatic necrosis (IPN) is an economically significant viral disease of salmonid fish worldwide. Infectious pancreatic necrosis is categorised as a List III disease under Annex A of EU Council Directive 91/67/EEC. List III diseases are present within the EU and up to 2004 were regulated under national control programmes within each member state. The disease was first described in freshwater trout in North America in the 1950’s (Wood et al., 1955) and has been reported in Europe since the early 1970’s (Ball et al., 1971). Initially, IPN was regarded as a serious disease affecting rainbow trout fry and fingerlings (Roberts & Pearson, 2005). However as the salmon farming industry began to expand during the 1970’s, incidence of IPN disease in salmon also increased with the result that IPN is now widespread in the salmon farming industry in both Norway and Scotland. The economic loss due to the disease is large and outbreaks may occur in Atlantic salmon juveniles in fresh-water and in post-smolts after transfer to sea-water. Historically in Ireland, isolations of the IPN virus have been rare and occasional outbreaks have occurred in both rainbow trout and Atlantic salmon facilities. The Marine Institute and its predecessor, the Fisheries Research Centre, have been testing farmed and wild fish for disease pathogens since the mid 1980’s. The first reported clinical outbreak of IPN in Atlantic salmon occurred in 2003. However in 2006 severe outbreaks in a number of freshwater salmon hatcheries occurred which were all linked to imports from a specific single source. To date, clinical outbreaks of IPN in Ireland have been associated with imports of infected ova and their subsequent movement within the country. This report reviews the prevalence of the IPN virus in the Irish salmon farming industry and also in wild fish from selected rivers. It describes the steps taken by the industry to control the disease in 2006 and aims to provide some practical solutions to reduce the prevalence of the virus in farmed and wild fish and to prevent future outbreaks of the disease.Funder: Marine Institut

    A Novel Fabrication Method for Compliant Silicone Phantoms of Arterial Geometry for Use in Particle Image Velocimetry of Haemodynamics

    Get PDF
    Cardiovascular diseases (CVDs) are one of the leading causes of death globally. In-vitro measurement of blood flow in compliant arterial phantoms can provide better insight into haemodynamic states and therapeutic procedures. However, current fabrication techniques are not capable of producing thin-walled compliant phantoms of complex shapes. This study presents a new approach for the fabrication of compliant phantoms suitable for optical measurement. Two 1.5× scaled models of the ascending aorta, including the brachiocephalic artery (BCA), were fabricated from silicone elastomer Sylgard-184. The initial phantom used the existing state of the art lost core manufacturing technique with simple end supports, an acrylonitrile butadiene styrene (ABS) additive manufactured male mould and Ebalta-milled female mould. The second phantom was produced with the same method but used more rigid end supports and ABS male and female moulds. The wall thickness consistency and quality of resulting stereoscopic particle image velocimetry (SPIV) were used to verify the fidelity of the phantom for optical measurement and investigation of physiological flow fields. However, the initial phantom had a rough surface that obscured SPIV analysis and had a variable wall thickness (range = 0.815 mm). The second phantom provided clear particle images and had a less variable wall thickness (range = 0.317 mm). The manufacturing method developed is suitable for fast and cost-effective fabrication of different compliant arterial phantom geometries

    Fabrication and Assessment of 3D Printed Anatomical Models of the Lower Limb for Anatomical Teaching and Femoral Vessel Access Training in Medicine

    Get PDF
    For centuries, cadaveric dissection has been the touchstone of anatomy education. It offers a medical student intimate access to his or her first patient. In contrast to idealized artisan anatomical models, it presents the natural variation of anatomy in fine detail. However, a new teaching construct has appeared recently in which artificial cadavers are manufactured through three-dimensional (3D) printing of patient specific radiological data sets. In this article, a simple powder based printer is made more versatile to manufacture hard bones, silicone muscles and perfusable blood vessels. The approach involves blending modern approaches (3D printing) with more ancient ones (casting and lost-wax techniques). These anatomically accurate models can augment the approach to anatomy teaching from dissection to synthesis of 3D-printed parts held together with embedded rare earth magnets. Vascular simulation is possible through application of pumps and artificial blood. The resulting arteries and veins can be cannulated and imaged with Doppler ultrasound. In some respects, 3D-printed anatomy is superior to older teaching methods because the parts are cheap, scalable, they can cover the entire age span, they can be both dissected and reassembled and the data files can be printed anywhere in the world and mass produced. Anatomical diversity can be collated as a digital repository and reprinted rather than waiting for the rare variant to appear in the dissection room. It is predicted that 3D printing will revolutionize anatomy when poly-material printing is perfected in the early 21st century. (C) 2015 American Association of Anatomists

    Fabrication and Assessment of 3D Printed Anatomical Models of the Lower Limb for Anatomical Teaching and Femoral Vessel Access Training in Medicine

    Get PDF
    For centuries, cadaveric dissection has been the touchstone of anatomy education. It offers a medical student intimate access to his or her first patient. In contrast to idealized artisan anatomical models, it presents the natural variation of anatomy in fine detail. However, a new teaching construct has appeared recently in which artificial cadavers are manufactured through three-dimensional (3D) printing of patient specific radiological data sets. In this article, a simple powder based printer is made more versatile to manufacture hard bones, silicone muscles and perfusable blood vessels. The approach involves blending modern approaches (3D printing) with more ancient ones (casting and lost-wax techniques). These anatomically accurate models can augment the approach to anatomy teaching from dissection to synthesis of 3D-printed parts held together with embedded rare earth magnets. Vascular simulation is possible through application of pumps and artificial blood. The resulting arteries and veins can be cannulated and imaged with Doppler ultrasound. In some respects, 3D-printed anatomy is superior to older teaching methods because the parts are cheap, scalable, they can cover the entire age span, they can be both dissected and reassembled and the data files can be printed anywhere in the world and mass produced. Anatomical diversity can be collated as a digital repository and reprinted rather than waiting for the rare variant to appear in the dissection room. It is predicted that 3D printing will revolutionize anatomy when poly-material printing is perfected in the early 21st century. (C) 2015 American Association of Anatomists

    The use of Botulinum toxin in the management of Hidradenitis Suppurativa : a systematic review

    Get PDF
    Background: Hidradenitis suppurativa (HS) is a chronic inflammatory skin condition characterized by suppurative infection, sinus tract, and abscess formation. International management guidelines are largely consensus-based. Botulinum toxin (BTX) has been widely used in the treatment of apocrine and eccrine gland disorders, such as hyperhidrosis, although the effectiveness of BTX in the treatment of HS remains unknown. The aim of this systematic review was to understand the published evidence of BTX safety and effectiveness in the management of HS. Methods: We conducted a PRISMA-compliant, prospectively registered (PROSPERO, CRD42021228732), systematic review. We devised bespoke search strategy and applied it to the Cochrane Central Register of Controlled Trials, Medline, Embase, and OpenGrey up until March 2022. We included all clinical studies that reported outcomes following BTX treatment in patients diagnosed with HS (both adult and pediatric). Results: A total of 4658 studies were identified, of which six met full inclusion criteria reporting data on 26 patients. The six identified studies included one randomized control trial, one case series, and four case studies. The one included randomized control trial demonstrated a significant reduction in the Dermatology Life Quality Index score at 3 months following treatment with BTX. Conclusions: The effectiveness and safety of BTX in the treatment of HS remain unknown. This systematic review identified a paucity of high-quality clinical data. Evidence of treatment effectiveness is likely to come from registry-based cohort studies using established core outcome sets in the first instance

    Link between increased gut hormones signaling satiety and reduced food reward following gastric bypass surgery for obesity

    Get PDF
    CONTEXT: Roux-en-Y gastric bypass (RYGB) surgery is an effective long-term intervention for weight loss maintenance, reducing appetite, and also food reward, via unclear mechanisms. OBJECTIVE: To investigate the role of elevated satiety gut hormones after RYGB, we examined food hedonic-reward responses after their acute post-prandial suppression. DESIGN: These were randomized, placebo-controlled, double-blind, crossover experimental medicine studies. PATIENTS: Two groups, more than 5 months after RYGB for obesity (n = 7-11), compared with nonobese controls (n = 10), or patients after gastric banding (BAND) surgery (n = 9) participated in the studies. INTERVENTION: Studies were performed after acute administration of the somatostatin analog octreotide or saline. In one study, patients after RYGB, and nonobese controls, performed a behavioral progressive ratio task for chocolate sweets. In another study, patients after RYGB, and controls after BAND surgery, performed a functional magnetic resonance imaging food picture evaluation task. MAIN OUTCOME MEASURES: Octreotide increased both appetitive food reward (breakpoint) in the progressive ratio task (n = 9), and food appeal (n = 9) and reward system blood oxygen level-dependent signal (n = 7) in the functional magnetic resonance imaging task, in the RYGB group, but not in the control groups. RESULTS: Octreotide suppressed postprandial plasma peptide YY, glucagon-like peptide-1, and fibroblast growth factor-19 after RYGB. The reduction in plasma peptide YY with octreotide positively correlated with the increase in brain reward system blood oxygen level-dependent signal in RYGB/BAND subjects, with a similar trend for glucagon-like peptide-1. CONCLUSIONS: Enhanced satiety gut hormone responses after RYGB may be a causative mechanism by which anatomical alterations of the gut in obesity surgery modify behavioral and brain reward responses to food

    Targeted nasal vaccination provides antibody-independent protection against Staphylococcus aureus.

    Get PDF
    Despite showing promise in preclinical models, anti-Staphylococcus aureus vaccines have failed in clinical trials. To date, approaches have focused on neutralizing/opsonizing antibodies; however, vaccines exclusively inducing cellular immunity have not been studied to formally test whether a cellular-only response can protect against infection. We demonstrate that nasal vaccination with targeted nanoparticles loaded with Staphylococcus aureus antigen protects against acute systemic S. aureus infection in the absence of any antigen-specific antibodies. These findings can help inform future developments in staphylococcal vaccine development and studies into the requirements for protective immunity against S. aureus

    Aquaplan: health management for finfish aquaculture

    Get PDF
    Lead partner: Marine Institute, Oranmore, Co. Galway. Project Partners: Vet Aqua International, Oranmore, Co. Galway., Global Trust Certification Ltd., Dundalk, Co. Louth. Project duration: 01/10/2008 to 31/10/2011The AquaPlan project brought together key stakeholders from the finfish aquaculture industry and state agencies with the aim of drafting and implementing a national strategic plan for fish health in Ireland. Many countries already have well established comprehensive strategies for managing aquatic animal health which are deemed necessary for the sustainable development of the industry. A range of deliverables were produced by the project which are all essential components of the strategic plan for fish health management.Funder: Ireland's EU structural funds programme 2007-2013, co-funded by the Irish government and the European Union- European Regional Development Fund, Marine Institute. Grant-Aid agreement no. PBA/AF/08/003(01
    corecore