2,556 research outputs found
Regulation of B cell fate by chronic activity of the IgE B cell receptor.
IgE can trigger potent allergic responses, yet the mechanisms regulating IgE production are poorly understood. Here we reveal that IgE+ B cells are constrained by chronic activity of the IgE B cell receptor (BCR). In the absence of cognate antigen, the IgE BCR promoted terminal differentiation of B cells into plasma cells (PCs) under cell culture conditions mimicking T cell help. This antigen-independent PC differentiation involved multiple IgE domains and Syk, CD19, BLNK, Btk, and IRF4. Disruption of BCR signaling in mice led to consistently exaggerated IgE+ germinal center (GC) B cell but variably increased PC responses. We were unable to confirm reports that the IgE BCR directly promoted intrinsic apoptosis. Instead, IgE+ GC B cells exhibited poor antigen presentation and prolonged cell cycles, suggesting reduced competition for T cell help. We propose that chronic BCR activity and access to T cell help play critical roles in regulating IgE responses
The mortality of companies
The firm is a fundamental economic unit of contemporary human societies. Studies on the general quantitative and statistical character of firms have produced mixed results regarding their lifespans and mortality. We examine a comprehensive database of more than 25 000 publicly traded North American companies, from 1950 to 2009, to derive the statistics of firm lifespans. Based on detailed survival analysis, we show that the mortality of publicly traded companies manifests an approximately constant hazard rate over long periods of observation. This regularity indicates that mortality rates are independent of a company's age. We show that the typical half-life of a publicly traded company is about a decade, regardless of business sector. Our results shed new light on the dynamics of births and deaths of publicly traded companies and identify some of the necessary ingredients of a general theory of firms
Linking goniometer measurements to hyperspectral and multi-sensor imagery for retrieval of beach properties and coastal characterization
In June 2011, a multi-sensor airborne remote sensing campaign was flown at the Virginia Coast Reserve Long Term Ecological Research site with coordinated ground and water calibration and validation (cal/val) measurements. Remote sensing imagery acquired during the ten day exercise included hyperspectral imagery (CASI-1500), topographic LiDAR, and thermal infra-red imagery, all simultaneously from the same aircraft. Airborne synthetic aperture radar (SAR) data acquisition for a smaller subset of sites occurred in September 2011 (VCR\u2711). Focus areas for VCR\u2711 were properties of beaches and tidal flats and barrier island vegetation and, in the water column, shallow water bathymetry. On land, cal/val emphasized tidal flat and beach grain size distributions, density, moisture content, and other geotechnical properties such as shear and bearing strength (dynamic deflection modulus), which were related to hyperspectral BRDF measurements taken with the new NRL Goniometer for Outdoor Portable Hyperspectral Earth Reflectance (GOPHER). This builds on our earlier work at this site in 2007 related to beach properties and shallow water bathymetry. A priority for VCR\u2711 was to collect and model relationships between hyperspectral imagery, acquired from the aircraft at a variety of different phase angles, and geotechnical properties of beaches and tidal flats. One aspect of this effort was a demonstration that sand density differences are observable and consistent in reflectance spectra from GOPHER data, in CASI hyperspectral imagery, as well as in hyperspectral goniometer measurements conducted in our laboratory after VCR\u2711
Five Kepler target stars that show multiple transiting exoplanet candidates
We present and discuss five candidate exoplanetary systems identified with
the Kepler spacecraft. These five systems show transits from multiple exoplanet
candidates. Should these objects prove to be planetary in nature, then these
five systems open new opportunities for the field of exoplanets and provide new
insights into the formation and dynamical evolution of planetary systems. We
discuss the methods used to identify multiple transiting objects from the
Kepler photometry as well as the false-positive rejection methods that have
been applied to these data. One system shows transits from three distinct
objects while the remaining four systems show transits from two objects. Three
systems have planet candidates that are near mean motion
commensurabilities---two near 2:1 and one just outside 5:2. We discuss the
implications that multitransiting systems have on the distribution of orbital
inclinations in planetary systems, and hence their dynamical histories; as well
as their likely masses and chemical compositions. A Monte Carlo study indicates
that, with additional data, most of these systems should exhibit detectable
transit timing variations (TTV) due to gravitational interactions---though none
are apparent in these data. We also discuss new challenges that arise in TTV
analyses due to the presence of more than two planets in a system.Comment: Accepted to Ap
Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration
The Numerical-Relativity-Analytical-Relativity (NRAR) collaboration is a
joint effort between members of the numerical relativity, analytical relativity
and gravitational-wave data analysis communities. The goal of the NRAR
collaboration is to produce numerical-relativity simulations of compact
binaries and use them to develop accurate analytical templates for the
LIGO/Virgo Collaboration to use in detecting gravitational-wave signals and
extracting astrophysical information from them. We describe the results of the
first stage of the NRAR project, which focused on producing an initial set of
numerical waveforms from binary black holes with moderate mass ratios and
spins, as well as one non-spinning binary configuration which has a mass ratio
of 10. All of the numerical waveforms are analysed in a uniform and consistent
manner, with numerical errors evaluated using an analysis code created by
members of the NRAR collaboration. We compare previously-calibrated,
non-precessing analytical waveforms, notably the effective-one-body (EOB) and
phenomenological template families, to the newly-produced numerical waveforms.
We find that when the binary's total mass is ~100-200 solar masses, current EOB
and phenomenological models of spinning, non-precessing binary waveforms have
overlaps above 99% (for advanced LIGO) with all of the non-precessing-binary
numerical waveforms with mass ratios <= 4, when maximizing over binary
parameters. This implies that the loss of event rate due to modelling error is
below 3%. Moreover, the non-spinning EOB waveforms previously calibrated to
five non-spinning waveforms with mass ratio smaller than 6 have overlaps above
99.7% with the numerical waveform with a mass ratio of 10, without even
maximizing on the binary parameters.Comment: 51 pages, 10 figures; published versio
Two Earth-sized planets orbiting Kepler-20
Since the discovery of the first extrasolar giant planets around Sun-like
stars, evolving observational capabilities have brought us closer to the
detection of true Earth analogues. The size of an exoplanet can be determined
when it periodically passes in front of (transits) its parent star, causing a
decrease in starlight proportional to its radius. The smallest exoplanet
hitherto discovered has a radius 1.42 times that of the Earth's radius (R
Earth), and hence has 2.9 times its volume. Here we report the discovery of two
planets, one Earth-sized (1.03R Earth) and the other smaller than the Earth
(0.87R Earth), orbiting the star Kepler-20, which is already known to host
three other, larger, transiting planets. The gravitational pull of the new
planets on the parent star is too small to measure with current
instrumentation. We apply a statistical method to show that the likelihood of
the planetary interpretation of the transit signals is more than three orders
of magnitude larger than that of the alternative hypothesis that the signals
result from an eclipsing binary star. Theoretical considerations imply that
these planets are rocky, with a composition of iron and silicate. The outer
planet could have developed a thick water vapour atmosphere.Comment: Letter to Nature; Received 8 November; accepted 13 December 2011;
Published online 20 December 201
Circulating Tumor DNA Monitoring on Chemo-immunotherapy for Risk Stratification in Advanced Non-Small Cell Lung Cancer
PURPOSE: Chemoimmunotherapy (chemoIO) is a prevalent first-line treatment for advanced driver-negative non-small cell lung cancer (NSCLC), with maintenance therapy given after induction. However, there is significant clinical variability in the duration, dosing, and timing of maintenance therapy after induction chemoIO. We used circulating tumor DNA (ctDNA) monitoring to inform outcomes in patients with advanced NSCLC receiving chemoIO.
EXPERIMENTAL DESIGN: This retrospective study included 221 patients from a phase III trial of atezolizumab+carboplatin+nab-paclitaxel versus carboplatin+nab-paclitaxel in squamous NSCLC (IMpower131). ctDNA monitoring used the FoundationOne Tracker involving comprehensive genomic profiling of pretreatment tumor tissue, variant selection using an algorithm to exclude nontumor variants, and multiplex PCR of up to 16 variants to detect and quantify ctDNA.
RESULTS: ctDNA was detected (ctDNA+) in 96% of pretreatment samples (median, 93 mean tumor molecules/mL), and similar ctDNA dynamics were noted across treatment arms during chemoIO. ctDNA decrease from baseline to C4D1 was associated with improved outcomes across multiple cutoffs for patients treated with chemoIO. When including patients with missing plasma or ctDNA- at baseline, patients with ctDNA- at C4D1 (clearance), had more favorable progression-free survival (median 8.8 vs. 3.5 months; HR, 0.32;0.20-0.52) and OS (median not reached vs. 8.9 months; HR, 0.22; 0.12-0.39) from C4D1 than ctDNA+ patients.
CONCLUSIONS: ctDNA monitoring during induction chemoIO can inform treatment outcomes in patients with advanced NSCLC. Importantly, monitoring remains feasible and informative for patients missing baseline ctDNA. ctDNA testing during induction chemoIO identifies patients at higher risk for disease progression and may inform patient selection for novel personalized maintenance or second-line treatment strategies
- …