123 research outputs found

    Possible Role of Microcrystallinity on Surface Properties of Titanium Surfaces for Biomedical Application

    Get PDF
    Dental implantology has grown tremendously, since the introduction of titanium. To enhance osseointegration, roughening techniques such as grit blasting, chemical etch, electrochemical anodization have been used with good results. An oxide layer mainly composed of TiO2 covers the surface of dental implants ensuring excellent corrosion resistance and chemical stability. Despite its biological role in achieving bone interlock, surprisingly, little is known about the structure of TiO2, which may be either amorphous or crystalline. Furthermore, at least two crystalline polymorph phases can be found at the bone–implant interface: anatase (tetragonal) and rutile (tetragonal). Therefore, besides the recognized importance of surface topography, energy, and charge, a more refined knowledge of surface chemistry is advisable when studying the bone–implant interface. Recently, sophisticated analysis techniques have been applied to dental implants such as Raman spectroscopy and X-ray diffraction to obtain structural-crystallographic characterization

    Ceramic Biomaterials for Dental Implants: Current Use and Future Perspectives

    Get PDF
    Although titanium implants have the longest traceable record of predictable clinical performance and by far the widest diffusion in the market, some drawbacks have been recently pointed out. Titanium is not a completely bioinert material, since it may elicit allergenic reactions and is capable to diffuse not only within the adjacent tissues, which is proven by the elevated concentrations found in peri-implant bone and regional lymph nodes, but also systemically. Ceramic materials for oral application have been used for 40 years. Presently, the material of choice is yttria-stabilized tetragonal zirconia, which presents excellent mechanical and tribological properties together with biocompatibility. Concerns remain about the long-term durability of the material, owing to the report of in vivo failures that were caused by the low-temperature degradation of zirconia. To address this issue, research has developed improved oxide-based materials such as alumina–zirconia composites along with non-oxidic ceramics such as silicon nitride

    Farmers as data sources: Cooperative framework for mapping soil properties for permanent crops in South Tyrol (Northern Italy)

    Get PDF
    Abstract Detailed knowledge of agricultural soil properties is a key element for high-quality food production. However, high-resolution soil data covering a large agricultural region are generally unavailable. This study explores a demand-driven cooperative framework for soil data sourcing that connects individual farmers to several stakeholders by means of a centralised database containing more than 16,000 records of soil information collected within the framework of an integrated production program for intensively managed permanent crops in the Adige/Etsch and Venosta/Vinschgau valleys in South Tyrol, Italy. Data for soil pH, soil organic matter (SOM), and soil texture were used to produce digital soil maps with a RMSE of 0.21, 1.25% and a cross-validation of 43%, respectively. Spatialisation was conducted using either regression-kriging or multinomial logistic regression. Collaboration among farmers, public administrators, and researchers provided a successful cooperative framework for digital soil mapping. The maps highlight the complex interplay of the postglacial evolution of these valleys due to the presence of a cluster of large alluvial fans and the anthropogenic influences of intense farming on pH, SOM, and soil texture. This study regarded a subset of the available soil properties, which can be dealt with using the geostatistical approaches presented herein. Thus, a long-term soil monitoring program and the combination of all available variables will allow digital assessment of the spatial patterns of nutrient availability, ecological risk assessments, change detection studies, and an overall long-term plan for soil security at larger spatial scales

    Fibroblast Interaction with Different Abutment Surfaces: In Vitro Study

    Get PDF
    Background: Attaining an effective mucosal attachment to the transmucosal part of the implant could protect the peri-implant bone. Aim: To evaluate if chair side surface treatments (plasma of Argon and ultraviolet light) may affect fibroblast adhesion on different titanium surfaces designed for soft tissue healing. Methods: Grade 5 titanium discs with four different surface topographies were subdivided into 3 groups: argon-plasma; ultraviolet light, and no treatment. Cell morphology and adhesion tests were performed at 20 min, 24 h, and 72 h. Results: Qualitative observation of the surfaces performed at the SEM was in accordance with the anticipated features. Roughness values ranged from smooth (MAC Sa = 0.2) to very rough (XA Sa = 21). At 20 min, all the untreated surfaces presented hemispherical cells with reduced filopodia, while the cells on treated samples were more spread with broad lamellipodia. However, these differences in spreading behavior disappeared at 24 h and 72 h. Argon-plasma, but not UV, significantly increased the number of fibroblasts independently of the surface type but only at 20 min. Statistically, there was no surface in combination with a treatment that favored a greater cellular adhesion. Conclusions: Data showed potential biological benefits of treating implant abutment surfaces with the plasma of argon in relation to early-stage cell adhesion

    Copper and zinc as a window to past agricultural land-use.

    Get PDF
    Abstract Intensive agricultural management significantly affects soil chemical properties. Such impacts, depending on the intensity of agronomic practices, might persist for several decades. We tested how current soil properties, especially heavy metal concentrations, reflect the land-use history over a 24,000 ha area dominated by intensive apple orchards and viticulture (South Tyrol, ITA). We combined georeferenced soil analyses with land-use maps from 1850 to 2010 in a space-for-time approach to detect the accumulation rates of copper and zinc and understand how present-day soil heavy metal concentrations reflect land-use history. Soils under vineyards since the 1850s showed the highest available copper concentration (median of 314.0 mg kg-1, accumulation rate between 19.4 and 41.3 mg kg-1·10 y-1). Zinc reached the highest concentration in the same land-use type (median of 32.5 mg kg-1, accumulation rate between 1.8 and 4.4 mg kg-1·10 y-1). Using a random forest approach on 44,132 soil samples, we extrapolated land-use history on the permanent crop area of the region, reaching an accuracy of 0.72. This suggests that combining current soil analysis, historical management information, and machine learning models provides a valuable tool to predict land-use history and understand management legacies

    Urban air pollution, climate and its impact on asthma morbidity

    Get PDF
    AbstractObjectiveTo study the mechanism of formation of air quality and to determine the impact of the studied factors on asthma morbidity in Vladivostok.MethodsThe evaluation of air pollution in Vladivostok was done using long-term (2008–2012) monitoring data (temperature, humidity, atmospheric pressure, wind speed, etc.). The levels of suspended particulate matter, nitrogen and sulfur dioxide, carbon monoxide, ammonia, formaldehyde (mg/m3) in six stationary observation posts were assessed. We studied the aerosol suspensions of solid particles, which were collected during snowfall from precipitation (snow) and air in 14 districts with different levels of anthropogenic impact. Melted snow was analyzed on laser granulometry. The impact of air pollution on the distribution of asthma morbidity was evaluated in various age groups by data of federal statistical observation obtained from 8 adults and 7 children municipal clinics in Vladivostok (2008–2012).ResultsThe content of suspended particulate components of pollution remained more stable, due to the features of atmospheric circulation, rugged terrain and residential development. The nano- and micro-sized particles (0–50 μm), which can absorb highly toxic metals, prevail in dust aerosols. These respirable fractions of particles, even in small doses, can contribute to the increase in asthma morbidity in the city.ConclusionsWe determined that asthma morbidity depends from general air pollution (in the range of 18.3%). It was detected that the highest age-specific dependence is associated with the content of particulate matter, carbon monoxide and nitrogen dioxide in air
    • …
    corecore