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A B S T R A C T

Detailed knowledge of agricultural soil properties is a key element for high-quality food production. However,
high-resolution soil data covering a large agricultural region are generally unavailable. This study explores a
demand-driven cooperative framework for soil data sourcing that connects individual farmers to several sta-
keholders by means of a centralised database containing more than 16,000 records of soil information collected
within the framework of an integrated production program for intensively managed permanent crops in the
Adige/Etsch and Venosta/Vinschgau valleys in South Tyrol, Italy. Data for soil pH, soil organic matter (SOM),
and soil texture were used to produce digital soil maps with a RMSE of 0.21, 1.25% and a cross-validation of
43%, respectively. Spatialisation was conducted using either regression-kriging or multinomial logistic regres-
sion. Collaboration among farmers, public administrators, and researchers provided a successful cooperative
framework for digital soil mapping. The maps highlight the complex interplay of the postglacial evolution of
these valleys due to the presence of a cluster of large alluvial fans and the anthropogenic influences of intense
farming on pH, SOM, and soil texture. This study regarded a subset of the available soil properties, which can be
dealt with using the geostatistical approaches presented herein. Thus, a long-term soil monitoring program and
the combination of all available variables will allow digital assessment of the spatial patterns of nutrient
availability, ecological risk assessments, change detection studies, and an overall long-term plan for soil security
at larger spatial scales.

1. Introduction

Strategies to respond to the growing demands for sustainable agri-
culture and soil conservation, together with improved food quality,
land productivity, and profitability, are present day challenges.
Combining these multi-level and multi-functional demands requires
action through development of agricultural policies and guidelines
applicable to different stakeholders, including food retailers, land
managers, and farmers (Foley et al., 2011; Robertson and Swinton,
2005; Tilman et al., 2011). Demand for sustainable foods plays a
driving role for farmers to abide by strict regulations. Among the dif-
ferent sustainable farming practices, integrated farming is widely
adopted throughout European agriculture (Edwards et al., 1993; Morris
and Winter, 1999). In particular, integrated farming promotes the

improvement of soil quality via guidelines for optimal soil management
(Carter, 2002; Hendrickson et al., 2008). In this framework, farmers
collect a large amount of valuable spatio-temporal agronomic data. As
done in some citizen science projects for collecting and disseminating
soil information (Rossiter et al., 2015), this framework, if properly
explored, may turn farmers into a potentially valuable source of
knowledge by engaging in interdisciplinary and participative colla-
borations with the various stakeholders (Bouma, 2015; Bouma et al.,
2012). Information of soil chemical and biophysical properties and
their spatial variability is a key element in soil management, providing
farmers, land managers, and policy makers with valuable knowledge
for the effective implementation of sustainable agriculture (Rüdisser
et al., 2015; McBratney et al., 2014; Bouma et al., 2012). Moreover, soil
information may be of enormous interest among retailers who can
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better leverage available data and explore new potential applications as
well as pro-active citizens and scholars for creating awareness cam-
paigns and digital technologies (Drakos et al., 2015; Godan, 2015;
Woodard, 2016). The most relevant soil properties for optimal soil
management are soil texture, soil organic matter (SOM), and pH. Soil
texture influences nearly all soil processes and contributes to water,
heat, and nutrient fluxes and their holding capacity (Saxton and Rawls,
2006; Grashey-Jansen, 2010). SOM affects soil–water relationships (Bot
et al., 2005) and serves as a soil quality and fertility indicator (Herrick,
2000; Lal, 2009). The pH directly affects nutrient availability, nutrient
uptake, and heavy metals dissolution, which may be toxic to plants.
Thus, non-optimal soil pH can cause plant stress (Läuchli and Grattan,
2017). Available point-wise soil information can be extrapolated in
space by means of digital soil mapping (McBratney et al., 2003;
Minasny and McBratney, 2016; Robinson and Metternicht, 2006). This
technique has been extensively tested by various authors (Scull et al.,
2003; Hengl et al., 2004). For continuous variables, such as pH, SOM,
and several other chemical soil properties, regression-kriging (RK) has
been proven to have good predictive capability (Hengl et al., 2007a,
2004). In contrast, the spatial prediction of categorical variables (i.e.,
soil texture) can be performed by means of multinomial logistic re-
gression (MLR) (Collard et al., 2014; Hengl et al., 2007b; Kempen et al.,
2009). Developing and managing comprehensive datasets are challen-
ging tasks; national-level soil surveying covers the medium to small
scales and generates coarse soil maps (Scull et al., 2003), while large-
scale soil surveying covers short-distance changes in soil properties
(Corstanje et al., 2007) related to geomorphology (Schaetzl and
Thompson, 2015) and land use management (Sun et al., 2003). Single
institutions collect limited amounts of soil data with high-quality
standards and methods, while projects with a citizen scientist approach
collect large amounts of data with diverse quality and collection pro-
tocols. In the South Tyrol case study, the public administrators and
farmers have established a rather interesting long tradition of colla-
boration. The local public research centre of agriculture and forestry
has provided important services (Dalla Via and Mantinger, 2012) to
local farmers. As a result, the centre has been recording soil information
analysed with reliable standards and protocols for decades. In this
study, a demand-driven cooperative and iterative framework for soil
data sourcing and management is explored. Integrated farming guide-
lines address the demand for sustainable agricultural practices, which
are achieved via collaborative cooperation between farmers, public
administrators, and research scientists. Hence, this research study aims
to (i) present a promising demand-driven framework that foresees
farmers as data sources of spatial soil information in intensively man-
aged permanent crops in South Tyrol; (ii) show the applicability of a
high-density soil database to the production of accurate digital soil
maps; and (iii) present and briefly discuss the produced maps of pH,
SOM, and soil texture.

2. Materials and methods

2.1. Study area

This study covered the Venosta/Vinschgau and Adige/Etsch valleys
in the Province of Bolzano/Bozen, South Tyrol, Italy (Fig. 1). South
Tyrol lies on the southern side of the main Alpine ridge. The area has a
typical continental Alpine precipitation regime, with low total annual
precipitation (450–850mm) (Hydrographic Office, South Tyrol). The
prevalent soil types on hillsides are Leptosols and Cambisols, while in
the valley floor they are gleyic Cambisols (partially calcaric), Fluvisols,
or Gleysols (Grashey-Jansen and Schröder, 2009; IUSS Working Group
WRB, 2014). South Tyrol is Europe's largest apple-growing area
spreading over nearly 19,000 ha, while vineyards cover about 5500 ha.
The rest of the agricultural land is covered by pastures (nearly
120,000 ha), meadows (nearly 70,000 ha), and other cultures (nearly
15,000 ha) (Agricultural Office, South Tyrol). Overall, 22.5% of the

land surface is used for agriculture (Tasser et al., 2008).

2.2. Soil sample data sourcing

In South Tyrol, viticulturists do not follow specific guidelines for soil
management, while apple farmers conduct integrated farming and
follow precise guidelines and regulations that prescribe soil sampling
every 5 years (AGRIOS, 2018). Notwithstanding, about 70% of all the
farmers in South Tyrol send soil samples to the Public Research Centre
of Agriculture and Forestry, Laimburg; the other 30% send them to
smaller local laboratories, and thus these soil data may be difficult to
access. Data used in this study is publically available upon request and
registration at the Research Centre for Agriculture and Forestry,
Laimburg, Bolzano/Bozen, Italy. The license agreement prevents com-
mercial use, while consent use of the data for research, educational and
dissemination purposes. Derivative and aggregated products can be
published if they do not contain cadastral parcel code in order to keep
farmers data anonymous. Data refer to soil properties for apple orch-
ards and vineyards located in the Venosta/Vinschgau and Adige/Etsch
valleys and analysed by the Laimburg laboratory during the period
2006–2013. Farmers collected a minimum of 15 soil subsamples from
within each parcel at the same profile depth (0–20 cm) and 1 kg of
mixed soil material was submitted to the laboratory. Determination of
pH and chemical composition was analytical, while textural classes
were defined by feel (Thien, 1979) according to the German classifi-
cation (AD-HOC AG, 2005), (Table 1). Each sample was identified with
a unique cadastral parcel code but not with geographical coordinates;
matching with an open-source cadastral map (OpenKat, 2018) allowed
us to georeference the samples using the coordinates of the centroid of
the corresponding cadastral parcel. Soil samples were ignored by the
study if a mismatch between the reference parcel code of the soil
sample database and the cadastral maps occurred. Finally, the dataset
comprised 16,139 sample points. Among many soil properties avail-
able, this research focuses on pH, SOM, and soil texture of topsoil
(0–20 cm) samples (Table 1).

2.3. Spatial analysis

2.3.1. Modelling framework
For each soil sample, two types of variables were investigated: nu-

merical (pH and SOM) and categorical (soil texture). Thus, two dif-
ferent interpolation methods were chosen to spatialize the studied
variables: RK for pH and SOM (Hengl et al., 2007b) and MLR for soil
texture classes. Because kriging estimators are sensitive to out-of-nor-
mality datasets (Lark, 2000), numerical pH and SOM variables were
investigated for normality and log (Mcgill et al., 1978). The spatial
analysis steps used in this paper follow the framework described in
(Hengl, 2009, 2007). The GSIF R package (Hengl et al., 2016) has been
used as the main tool for the spatial prediction.

2.3.2. Auxiliary variables
Several covariates were sourced and assessed for significant corre-

lation with the selected soil properties: a digital terrain model (DTM) at
25× 25m grid size (Geocatalogo, 2018); Slope at 25× 25m grid size
(Geocatalogo, 2018). Moreover, to distinguish the influence of bedrock
and sediment transport, three different maps were derived from the
geological map (Geocatalogo, 2018; ISPRA-Servizio Geologico, 2010),
representing the topographic distance from the main geological units
(i.e., sedimentary, metamorphic, and volcanic). The valley bottom
maps were derived by a map of areas prone to flood events
(Geocatalogo, 2018); the map clearly distinguishes the alluvial flood
plain from alluvial fans. This map was converted into two binary maps.
The first map showing the areas at the bottom of the valley (the alluvial
plain) and the second map referring to the areas not at the bottom of the
valley (alluvial fan and side slope, respectively). A detailed land use
map (LISS, 2013) was converted into two binary maps distinguishing
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between vineyards and apple orchards. Because the soil samples were
sampled from apple orchards and vineyards, other reported land uses
(LISS, 2013) were masked out before carrying out spatial predictions in
order to produce consistent digital soil maps. To reduce the multi-
collinearity effect, a principal component analysis (PCA) on the cov-
ariates was performed (Jolliffe, 2011). The transformed components
were used for regression predictions (Hengl, 2007). Raster covariates
were first overlaid on the land use map (apple orchards and vineyards),
centred on the mean, and normalised between 0 and 255. Ilwis software
(Gorte et al., 1988) was used to perform both normalization and PCA
computation.

2.3.3. Spatial prediction of soil properties
Values for pH and SOM were spatialized using RK. In RK, the re-

gression modelling is combined with kriging modelling of variograms
for regression residuals, which are then interpolated and added to the
regression estimate (Hengl et al., 2004). A machine learning random
forest algorithm was chosen for regression (Liaw and Wiener, 2014)
and ordinary kriging was chosen for the interpolation of residuals
(Pebesma and Wesseling, 1998). Model fitting and predictions were
performed with the GSIF R package using the fit.gstatModel() and
predict.gstatModel() functions (Hengl et al., 2016). Soil texture was
spatialized using MLR, which is a generalization of the logistic regres-
sion analysis to multiple events/categories (Venables and Ripley,
2002). This was achieved with the function spmultinom() within the
GSIF R package (Hengl et al., 2016), which uses the multinom() func-
tion from the nnet R package (Ripley and Venables, 2016). The final
spatial resolution is 25m×25m (Hengl, 2006). Accuracy of the digital
maps of pH, SOM and soil texture was assessed by 5-fold cross-valida-
tion by means of R2 and root-mean square error for pH and SOM and k
statistic for soil texture. Misclassification of the soil texture was de-
termined by confusion matrix. Similarly to (Rossiter et al., 2017), to
assess the weight of misclassification of the soil texture classes, Eu-
clidean distance between soil texture classes centroid was computed.

3. Results

3.1. Farmers' data sourcing and exploratory statistic

The links among demand for sustainable agriculture, agronomic
guidelines, and digital soil mapping using the farmers as a data source
was explored and appears to be a promising cooperative framework, as
synthesized in Fig. 2. This demand-driven framework highlights the

Fig. 1. Study area in the Venosta/Vinschgau and Adige/Etsch valleys in South Tyrol, Italy. Contour lines highlight topographic features such as alluvial fans and side
slopes in the study area.

Table 1
Parameters measured in topsoil (0–20 cm): analysis methods (VDLUFA, 1991),
units, and variable type. ICP-OES: inductively coupled plasma–optical emission
spectrometry; CAL: calcium acetate-lactate; CAT: CAT method (extraction so-
lution: 0.01M CaCl2+0.002M DTPA-solution). Textural classes were defined
by feel according to the German classification (AD-HOC AG Boden, 2005).
⁎Note that this is a comprehensive list of the variables available, as only pH,
SOM, and soil texture are considered in this study.

Parameter Analysis method Units Variable type

⁎pH CaCl2 glass electrode – Numerical
⁎SOM Elemental analysis % Numerical
⁎Soil texture Feel test Soil texture class Categorical
P2O5 CAL colorimetry mg/100 g Numerical
K2O CAL flame photometry mg/100 g Numerical
Mg CAT ICP-OES mg/100 g Numerical
Bor CAT ICP-OES mg/kg Numerical
Mn CAT ICP-OES mg/kg Numerical
Cu CAT ICP-OES mg/kg Numerical
Zn CAT ICP-OES mg/kg Numerical
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fundamental role of farmers as providers of a suite of crucial data at an
optimal resolution to support decision-making and sustainable crop
management.

The total number of samples was 714 (4.42%) for the vineyards and
15,425 (95.58%) for the apple orchards (Fig. 3). For the latter, the
sample density ranged from 0 to 239 points/km2 with an average of
62 points/km2, while in vineyards, the sample density ranged from 0 to
174.3 points/km2 with an average of 24.9 points/km2. The mean
sample density for the entire dataset is 54 points/km2, with each single
soil sample representing on average 0.5 ha with a mean distance of
136m (Fig. 3).

None of the continuous variables were normally distributed
(Table 2). Soil pH ranged from 4.2 (very acidic) to 8.1 (moderately
alkaline), with a median of 6.9. Soil pH showed a low relative varia-
bility with a coefficient of variation (CV) of 7.4% and quasi-normal
distribution with a moderate negative skewness of −0.93. SOM ranged
from 0.2% to 45.7%, with median of 4%. The large skewness of 3.86
and high relative variability of 52.8% in SOM is due to the presence of
extreme values on the far-right side of the distribution. Log-transfor-
mations of the data are represented in Table 2. The logarithm of pH (log
pH) slightly increased the skewness to −1.2, while logarithm of SOM
(log SOM) reduced the skewness of −0.56. Shapiro-Wilk test indicates
that transformed and raw data are not normal distributed. Finally, pH
and log SOM were adopted in the RK.

According to the German classification (AD-HOC AG Boden, 2005),
soil texture is represented by 11 categories in the study area (Fig. 4).
The most observed soil texture class is medium loamy sand (Sl3) with
35.78% followed by medium silty sand (Su3) with 19.17%, slightly
loamy sand (Sl2) with 15.8%, sandy silt (Us) with 15.68%, medium
clayey silt (Ut3) with 6.05%, and medium sandy loam (Ls3) with
3.40%. These six soil texture classes together cover more than 95% of
all the soil samples (Table 3).

3.2. Spatial modelling

To account for multicollinearity, a PCA is computed for pH and SOM
predictors prior to RK, as well as for soil texture predictors prior to
LMR. PCA results for pH and SOM and for soil texture are presented in
Tables X. The first three principal components (PCs) for pH and SOM
and soil texture together explain 91.61% of the variance (Table 4). The
PC1 distinguishes orchards at the valley bottom from vineyards on the
valley sides, PC2 reflects the flood area, and PC3 takes into account
geology and land use aspects.

The RK model parameters and cross-validation outcomes are re-
ported in Table 5. The regression model explained 61% of the variance
for pH and 40% of the variance for SOM. The mean of squared residuals
is 0.0023 and 0.1434, respectively, indicating higher regression errors
for SOM. The nugget value is small for pH and higher for SOM, while
ranges are similar at 1690m and 1230m, respectively. Partial sill and
nugget have similar values for both pH and SOM, suggesting a weak
spatial autocorrelation. RK performed better for pH than for SOM given
their overall accuracies of 82% and 68% (Table 5), respectively. The
multinomial logistic model for soil texture returned an overall accuracy
of 42.76% (Table 5). Confusion matrix between true and predicted soil
texture classes are reported in Table 6, while the weight of the mis-
classification in terms of distance between soil texture classes are pre-
sented in Table 7. The confusion matrix highlights Sl3 and Su3 as the
best predicted soil texture class with 72.6% and 52.4% accuracy, re-
spectively, with main misclassification assigned to the most similar
classes. The slightly loamy sand (Sl2), highly loamy sand (Sl4) and
loamy silty sand (Slu) were entirely misclassified. Slightly loamy sand
(Sl2) and highly loamy sand Sl4 were assigned to the nearest medium
loamy sand (Sl3) and medium silty sand (Su3). Loamy silty sand (Slu)
was entirely and largely misclassified after it was assigned to the rela-
tively farthest classes. Sandy silty (Us) has an accuracy of 27.8% and
presents a relatively large misclassification error as it is assigned mainly

Fig. 2. Demand-driven cooperative framework. Market demand for food quality and stakeholder demand for maintaining soil functions have led to the development
of sustainable agriculture regulation. Integrated farming guidelines for soil management implemented by farmers, combined with a centralised spatial data infra-
structure, can provide further applications and services.
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to medium silty sand (Su3) and medium loamy sand (Sl3).

3.3. Topsoil property maps

The results of the spatial prediction are the maps of pH, SOM, and
soil texture shown in Figs. 5, 7, and 9, respectively. The map dis-
tribution of pH, SOM, and soil texture with respect to their predictors
are presented in Figs. 6, 8, and 10, respectively.

Predicted pH values (Fig. 5) range from moderately acidic
(pH 5.5–6.0) with a minimum pH of 5.16 in apple orchards, to slightly
acidic (pH 6.0–6.5), neutral (6.5–7.3), and slightly alkaline
(pH 7.3–7.8), with a maximum pH of 7.96. Both land uses cover the
entire pH spectrum, but apple orchards show a bimodal distribution
with two peaks at neutral and slightly acid values. Soil pH in vineyards
shows smaller variability and a unimodal distribution with a peak at
neutral values. Both vineyards and apple orchards have very similar
mean pH of 6.80 and 6.77, respectively. Slightly alkaline pH is found in
flat valley bottoms near calcareous metamorphic rocks, where past
floods deposited carbonates (Fig. 6) and in the northwestern part of the

Venosta/Vinschgau Valley in the high-altitude apple orchards. Slightly
alkaline soil is also present in some small and localized hotspots in the
southern part of the Adige/Etsch Valley. Neutral pH characterizes the
study area among diverse altitudinal and slope ranges as well as in the
valley bottoms and in some alluvial fans of the Adige/Etsch Valley
(Fig. 6). The alluvial fans show slightly and moderately acid pH owing
to their silicate parent materials.

The SOM spatial distribution is shown in Fig. 7. SOM spatial pat-
terns are quite heterogeneous in the Venosta/Vinschgau Valley, while
they are more defined in the Adige/Etsch Valley. SOM frequency dis-
tribution (Fig. 7) presents larger variability in apple orchards, with
minimum and maximum values of 0.98% and 24.39%, respectively,
than the variability in vineyards, with minimum and maximum values
of 1.29% and 10.17%, respectively. Vineyards and apple orchards have
similar mean values of 4.14 and 4.29%, respectively. Low SOM values
between 0% and 2% are found in the southern Adige/Etsch Valley in
the valley bottom along the Adige/Etsch River (Fig. 8). SOM most
frequently ranged between 2% and 6% across the study area, and it was
generally lower in the Adige/Etsch Valley and higher in the Venosta/

Fig. 3. Soil sample density and distribution. The samples are unevenly distributed between the two farmland uses, with orchards representing more than 95% of the
total samples.

Table 2
Descriptive statistics of the original dataset (raw and log-transformed data) for pH and SOM. The table shows the statistical summary for pH and SOM. Min.:
minimum value. Q1: first quartile value. Median: median value. Q3: third quartile value. Max.: maximum value. Skew.: Skewness. CV: Coefficient of variation. W:
Shapiro-Wilk test. p-value: Probability value.

Shapiro-Wilk test

Min. Q1 Median Mean Q3 Max. Skew. CV W p-Value

pH 4.2 6.5 6.9 6.77 7.1 8.1 −0.93 7.44 0.9639 0.043
SOM [%] 0.2 3 4 4.39 5.3 45.7 3.86 52.8 0.7856 1.65e-14
Log pH 1.44 1.87 1.93 1.91 1.96 2.09 −1.2 4.07 0.9376 0.002
Log SOM [%] −1.61 1.1 1.39 1.36 1.67 3.82 −0.56 36.17 0.9816 0.023
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Vinschgau Valley. SOM between 6% and 10% was mostly located on
side slopes at higher elevation in the Adige/Etsch Valley, while it was
mostly located on alluvial fans in the Venosta/Vinschgau Valley (Figs. 7
and 8). Values of SOM above 10% are found at higher altitude in the
upper part of the Venosta/Vinschgau Valley, mostly in the valley

bottom and alluvial fans close to metamorphic rocks.
The soil texture composition changes from upstream (upper part of

Fig. 9) to downstream (lower part of Fig. 9). Medium loamy sand (Sl3),
medium silty sand (Su3), and sandy silt (Us) together represent more
than 90% of the study area. Vineyards and apple orchards are mostly
grown on medium loamy sand (Sl3) (statistics in Fig. 9). Upstream, the
Venosta/Vinschgau Valley presents sandy silt (Us) soils followed
downstream by medium loamy sand (Sl3) soils. The northern part of the
Adige/Etsch Valley shows medium silty sand (Su3) soils in the valley
bottom and medium loamy sand (Sl3) on the side slopes and alluvial
fans. In the southern part of the Adige/Etsch Valley, soil classes
downstream typically represent finer material, such as sandy silt (Us)
and medium clayey silt (Ut3) soils. Side slopes of the southern part of
the Adige/Etsch Valley present medium sandy loam (Ls3) soils. Medium
loamy sand (Sl3) soils are generally closer to metamorphic and volcanic
rocks and further away from sedimentary rocks (see Fig. 10). Moreover,
these soils are mostly localized in the Venosta/Vinschgau Valley in the
valley bottom, as well as on the large alluvial fan and in the Adige/
Etsch Valley in alluvial fan areas, as well as on the Appiano/Eppan
plateau above the valley bottom. Medium loamy sand (Sl3) soil is found
more frequently in the Adige/Etsch Valley in the flat valley bottom
close to volcanic and sedimentary rocks (Fig. 10). Medium sandy loam

Fig. 4. Soil sample texture classes according to AD-
HOC AG Boden (2005). T=Clay, S= sand, U= silt,
L= loam. 2= slight, 3=medium, 4= high. The
soil texture classes sampled in the study area are
highlighted in yellow. (For interpretation of the re-
ferences to color in this figure legend, the reader is
referred to the web version of this article.)

Table 3
Percent distribution of soil sample texture classes according to AD-HOC AG
Boden (2005). In the study area, 11 soil texture classes were found. Loamy sand
soils (Sl3, Sl2) are the most representative, followed by silty sandy soils (Su3)
and sandy silt (Us).

Soil texture classes (Ad-hoc-AG Boden) Percent [%] Cumulate Percent [%]

Ss - pure sand 0.01 0.01
Sl2 - slightly loamy sand 15.80 15.81
Sl3 - medium loamy sand 35.78 51.59
Su3 - medium silty sand 19.17 70.76
Sl4 - highly loamy sand 0.44 71.20
Ls3 - medium sandy loam 3.40 74.60
Slu – loamy silty sand 2.13 76.75
Lt3 - medium clayey loam 0.02 76.75
Us - sandy silt 15.68 92.43
Lu - silty loam 1.52 93.95
Ut3 - medium clayey silt 6.05 100

Table 4
Soil predictive components for soil texture. Var. is the variance explained by each single PC, DTM is digital terrain model, Slope, Dist. from Sed. is distance from
sedimentary rocks, Dist. from Met. Is distance from metamorphic rocks, Dist. from Volc. Is distance from volcanic rocks, bottom valley is a binary map that excludes
side slopes and alluvial fans, and not bottom valley is a binary map that excludes flood plains. Land use orchard and vineyard are binary maps that respectively define
the land use.

Var. DTM Slope Dist. from Sed. Dist. from Met. Dist. from Volc. Valley bottom Not valley bottom Land use orchard Land use vineyard

PC1 56 0.246 0.12 0.243 0.232 0.162 0.371 0.415 0.104 0.682
PC2 23.18 0.183 0.175 0.062 −0.051 0.022 −0.591 0.66 0.302 −0.233
PC3 12.43 0.202 −0.07 0.222 −0.544 0.139 −0.328 −0.009 −0.629 0.292
PC4 4.23 0.437 0.033 0.378 −0.35 0.403 0.277 −0.243 0.366 −0.332
PC5 1.56 0.408 −0.249 −0.382 0.48 0.552 −0.186 −0.092 −0.205 −0.074
PC6 1.24 0.292 0.758 −0.523 −0.181 −0.08 0.098 −0.109 −0.062 0.051
PC7 0.88 −0.201 0.547 0.529 0.441 0.171 −0.181 −0.208 −0.249 −0.139
PC8 0.47 0.618 −0.115 0.216 0.26 −0.672 −0.043 −0.141 −0.1 −0.084
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(Ls3) is localized in the southern part of the Adige/Etsch Valley on
higher side slopes, near sedimentary and volcanic rocks. Sandy silt (Us)
is located in the flat valley bottom of two distinct regions of the study
area, that is, the northern-west part of the Venosta/Vinschgau Valley
and the southern part of the Adige/Etsch Valley.

The spatial distribution of pH, SOM, and soil texture in the study
area are the result of the complex interplay between its postglacial
evolution, geomorphology, geology, and the more recent impact of
intensive agriculture. To better depict common patterns and relations,
the three maps in Fig. 11 were synthesized. Neutral pH (6.5–7.3) covers
72.2% of the total area, generally in the valley bottom, and is re-
presented for 41% by SOM 2–4%, 23.9% by SOM 4–6%, and 5.6% by
SOM 6–8%. Neutral pH is mostly on medium silty sand (Su3) and
medium loamy sand (Sl3) (Fig. 11g, m, and q). Slightly acidic
(pH 6.0–6.5) and moderately acidic (pH 5.5–6) soils cover 23.82% and
1.40% of the total area, respectively, and they are associated with al-
luvial fans owing to the respective silicate parent material. Similarly to
neutral pH, slightly acid and moderately acid pH soils have SOM con-
tent ranging from 2% to 8% with soil texture being medium loamy sand
(Sl3) (Fig. 11f, l, and p). Moderately acidic soils are absent at the lowest
and highest SOM class and are found on medium loamy sand soils and
marginally on medium silty sand (Fig. 11a and z). Slightly alkaline pH
soils cover 2.49% of the total surface on sandy silt (Us) soils with SOM
content being mostly 2–6% (Fig. 11h and n). Finally, 93.4% of the total
study area refers to SOM classes between 2% and 8% with neutral or
slightly acidic soils with texture classes being comprehensively re-
presented (Fig. 11f, g, l, m, p, and q).

4. Discussion

4.1. Farmer data sourcing

Soil science research produces large knowledge bases that some-
times are disconnected from real practices in farming fields. Knowledge
and data collected by farmers during their agronomic practices are
often not shared between “neighbours.” Demands by regulatory bodies
for sustainable agriculture and their sustainable management

guidelines can operate as interlinks and driving forces for fruitful co-
operation between farmers (as data sources) and soil scientists (Bouma,
2001). This cooperation can be realized through a centralised database
for soil information and can promote a successful framework for ex-
tensive and long-term soil monitoring in agricultural areas. The fra-
mework would allow studies of spatial patterns and trends, which are
much more valuable than disentangled point-wise knowledge. More-
over, coupling this demand-driven cooperative framework with parti-
cipatory approaches would eventually raise awareness and stress the
importance of the role of each stakeholder toward sustainable agri-
culture (Bouma et al., 2012). However, the soil data used in this study
were available only thanks to an ad-hoc agreement, hence, is not
publicly available. In this context, the authors intend to proactively
stimulate the debate on this issue and promote opportunities for data
sharing among various stakeholders (Bouma, 2001). This study high-
lights that the framework allowed the management of a large dataset of
soil properties, with an average density of about 50 soil samples/km2.
Moreover, the relative sample density will increase over time, and so
will map accuracy as a consequence. Nevertheless, the highest sample
density was in apple orchards, while vineyards had generally lower
sample density. This is due to the soil management guidelines for

Table 5
RK and MLR parameters and cross-validation. GoF: goodness of fit, Mean sq. res.: mean squared residuals, Var. expl.: variance explained, Psill: (partial sill) value of
semivariance at which stationary trend is reached, Nugget: value of semivariance at distance zero, Range: distance at which 95% of the Psill is reached, Cross. Val.:
cross validation.

GoF Regression model Variogram parameters

Variable RMSE R2 Mean sq. res. Var expl. Model Nugget Psill Range

pH 0.21 82% 0.1 61.75% Exponential 0.05 0.07 259,443
SOM 1.25 68% 0.15 39.86% Exponential 1.97 1.51 667

Cross. Val.
Soil texture 42%

Table 6
Confusion matrix expressed in percent between true and predicted soil texture classes.

True

Sl2 Sl3 Su3 Sl4 Ls3 Slu Us Lu Ut3

Predicted Sl2 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Sl3 60.7% 72.6% 28.6% 64.3% 61.3% 47.0% 25.4% 14.0% 9.6%
Su3 29.2% 19.3% 52.4% 21.4% 11.3% 25.8% 39.2% 36.0% 47.5%
Sl4 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Ls3 0.2% 1.3% 0.3% 0.0% 9.4% 7.6% 0.4% 16.0% 1.0%
Slu 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Us 8.1% 6.4% 13.6% 14.3% 16.0% 15.2% 27.8% 12.0% 33.8%
Lu 0.0% 0.1% 0.0% 0.0% 0.0% 1.5% 0.2% 6.0% 0.5%
Ut3 1.8% 0.4% 5.1% 0.0% 1.9% 3.0% 7.1% 16.0% 7.6%

The values in bold represent the percentage of the soil texture classes correctly predicted.

Table 7
Normalised Euclidean distance of soil texture classes by means of their particle
size fraction centroid.

Normalised Euclidean distance

Sl2 Sl3 Su3 Sl4 Ls3 Slu Us Lu Ut3

Sl2 0 0.16 0.22 0.23 0.45 0.50 0.74 0.82 1.00
Sl3 0.16 0 0.11 0.08 0.30 0.34 0.60 0.66 0.85
Su3 0.22 0.11 0 0.16 0.30 0.30 0.52 0.63 0.79
Sl4 0.23 0.08 0.16 0 0.23 0.30 0.57 0.60 0.80
Ls3 0.45 0.30 0.30 0.23 0 0.15 0.42 0.38 0.60
Slu 0.50 0.34 0.30 0.30 0.15 0 0.28 0.33 0.50
Us 0.74 0.60 0.52 0.57 0.42 0.28 0 0.28 0.30
Lu 0.82 0.66 0.63 0.60 0.38 0.33 0.28 0 0.24
Ut3 1.00 0.85 0.79 0.80 0.60 0.50 0.30 0.24 0

S. Della Chiesa, et al. Geoderma 342 (2019) 93–105

99



integrated fruit production (AGRIOS, 2018). Adopting similar guide-
lines for vineyards would greatly improve data amount and spatial
distribution, hence improving soil mapping spatial prediction. How-
ever, apple orchards still represent 80% of the permanent crop fields in
South Tyrol. Soil sampling repetition and analyses, which occur on a 5
yearly basis, are an ideal framework for long-term soil monitoring
(Morvan et al., 2008; Nerger et al., 2016). The systematic monitoring of
all the available soil variables is fundamental for detection of changes
in soil physical and chemical properties, hence soil quality (Bünemann
et al., 2018). Detection of changes in soil quality will promote design of
specific policy measures for a sustainable use of soil.

4.2. Spatial analysis

Regression models can be used for spatial prediction if independent
variables, called predictors, are available, and a correlation between
dependent and independent variables is found. The predictors selected

in this study proved to be reliable and their PCs adequately identified
environmental characteristics such geomorphology, geology, and flu-
vial transport. On the one hand, MLR is a form of regression equation
predicting the probability of category membership on a dependent
variable based on multiple independent variables (Kwak and Clayton-
Matthews, 2002). On the other hand, RK intermixes regression with
spatial autocorrelation of the variable to be interpolated (Hengl et al.,
2004). This approach worked best in this research with numerical
variables, where correlations between the chosen predictors and pH
and SOM were found, though random patterns were still present. Kri-
ging interpolation of residuals improved regression performance for
both pH and SOM despite regression residuals having a weak auto-
correlation; therefore, kriging helps us deal with spatial stochasticity.
The accuracy of kriging models requires a sound sample design in terms
of quality, number, and spatial distribution (Hengl et al., 2007a). The
high sample number and density in this study ensure satisfactory per-
formance of the interpolation models (Stahl et al., 2006; Webster and

Fig. 5. Topsoil pH map. The lower part of the map shows the frequency distribution subdivided by land use. Contour lines highlight topographic features such as
alluvial fans and side slopes in the study area.

Fig. 6. Synthesis of how the pH soil property map is distributed among the different predictors.

S. Della Chiesa, et al. Geoderma 342 (2019) 93–105

100



Oliver, 1992). RK and MLR could lead to artefacts when predictors and
their PCAs show unreliable patterns (Hengl et al., 2007a), but the
quality of the selected predictors avoided such issues. For pH and SOM
maps, performance of RK proved to be comparable with that of previous
studies (Kumar et al., 2012; Zhu and Lin, 2010). MLR was biased by
unbalanced proportion of samples (Debella-gilo and Etzelmüller, 2009;
Real et al., 2006). That could be the reason for the higher prediction
performance on classes with a higher number of samples. MLR assigned
the Sl2 (slightly loamy sand) texture class almost entirely to the Sl3
(medium loam sand) class. These two classes represent 15.80% and
35.78% of the survey's samples, respectively. As a result, the Sl2 class is
excluded from the final map and its accuracy is computed as zero, also
affecting the overall accuracy of the map. For these reasons, soil texture
spatial prediction showed a lower accuracy in comparison with what is
generally presented in the literature (Hengl et al., 2007b).

4.3. Soil property maps

The results presented in this work show the complex interplay of
postglacial evolution, geomorphological processes, and anthropogenic
influences on the variability of pH, SOM, and soil texture in the study
area. The large number of samples combined with good spatial dis-
tribution and proper predictors have contributed to the robust estima-
tion of soil pH and SOM patterns, while the overall accuracy of the
predicted soil texture map is less satisfactory. The feel test for soil
texture classification, despite being an empirical method, proved to be
sufficiently accurate and could replace laboratory analysis for soil
mapping purposes (Vos et al., 2016). Moreover, while chemical prop-
erties change over time, in dam-regulated networks like the Adige/
Etsch River, soil texture generally maintains its properties. Since soil
texture data almost doubles in quantity every 5 years, the accuracy of
future soil texture spatial predictions is expected to improve. A general
limitation of the presented results is that they refer only to the topsoil.

Fig. 7. Topsoil map of SOM (%).The lower left portion maps the frequency distribution according to land use. Contour lines highlight topographic features such as
alluvial fans and side slopes in the study area.

Fig. 8. Synthesis of how SOM is distributed among the different predictors.
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However, the topsoil is relevant in agriculture, as this is where organic
matter and microorganism biological activity are concentrated (Nair,
2016). Data on subsurface soil (20–40 cm) and other agricultural land
uses exist in the adopted database, but with a 10-fold lower sampling
density. Therefore, spatial prediction of subsoil physical and chemical
properties might not be accurate. However, with the amount of data
increasing over time, subsoil texture spatial prediction will become
possible. Moreover, a detailed laboratory particle-size analysis would
allow the estimation of the exact percent fraction distribution for a
more detailed soil texture classification and hydraulic property esti-
mation (Clapp and Hornberger, 1978; van Genuchten, 1980). Grashey-
Jansen (2014) investigated the soil water dynamics in the Venosta/
Vinschgau Valley, highlighting the importance of knowing the soil
texture particle size fraction to assess plant water availability. This is
particularly valuable in the valley bottom, where heavy soils and

shallow groundwater directly impact the magnitude of the potential
capillarity rise of groundwater (Grashey-Jansen, 2010). Despite the
overall poor accuracy of the topsoil texture map, more than 80% of the
predicted soil texture classes belong to medium loamy sand (Sl3) and
medium silty sand (Su3) soils, which do not largely differ in particle
size fraction. Therefore, prediction errors do not substantially affect the
spatial pattern of soil texture, which is scientifically sound and clearly
shows the interplay of past river floods as finer material is at the valley
bottom and increases in fraction from upstream to downstream.
Moreover, the presence of postglacial mega alluvial fans (Cavalli et al.,
2013) affected debris flow and thus sedimentation in the north eastern
part of the Venosta/Vinschgau Valley (Brardinoni et al., 2018). The
alluvial fans in the Adige/Etsch Valley were unaffected by floods and
thus show medium loamy sand (Sl3) soils. Downstream in the Adige/
Etsch Valley near the city of Bolzano/Bozen, soil becomes finer and

Fig. 9. Topsoil textural classes predicted by the MLR, German classification according to AD-HOC AG Boden (2005). In the soil texture triangle, yellow highlights the
six classes after spatial interpolation. Note that the class Lu – silty loam (Lu) is barely visible in the southern part of the Adige/Etsch Valley owing to the very low
coverage. Contour lines highlight topographic features such as alluvial fans and side slopes in the study area. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 10. Synthesis of how the SOM soil property map is distributed among the different predictors.
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heavier due to the different dynamics after the confluence of the eastern
and western watersheds. Spatial distribution of pH reflects the an-
thropogenic impact of intensive agriculture, geomorphology, and the
surrounding geology. Soil pH had an overall low variability, indicating
soil conditioning through liming by farming activity (Bogunovic et al.,
2017). The Venosta/Vinschgau Valley shows a larger variability in pH
compared with the Adige/Etsch Valley owing to the presence of a
cluster of large alluvial fans where pH is dominated by the silicate
parent material. The slightly alkaline sandy silt (Us) soils with high
SOM content, in the northern west part of the Venosta/Vinschgau

Valley, is linked to its postglacial evolution. The presence of the largest
alluvial fan in the Alps (Cavalli et al., 2013) dammed the course of the
Adige River, thus depositing metamorphic calcareous sediments of the
Ortles/Ortler Mountain (Maraio et al., 2018). The higher heterogeneity
and overall higher values of SOM spatial distribution are located in the
Venosta/Vinschgau Valley, with very high SOM content located in
former lacustrine and swampy zones created by alluvial fans
(Brardinoni et al., 2018; Cavalli et al., 2013). Moreover, in the Venosta/
Vinschgau Valley, rates of SOM degradation are influenced by the
colder climate and more recent intensive farming land use in the upper

Fig. 11. Pie charts representing the soil property maps classified and combined to assess the different relations. The percentage of pixels falling within each
combination of pH and SOM is explicitly reported and highlighted as layer transparency relative to each pie chart. Total percentage for each class of pH and SOM is
also reported. Abbreviations for the soil texture classes can be found in Table 3 and Fig. 4.
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part of the valley (Pulleman et al., 2000). A relatively lower variability
of SOM is found in the lower part of the Adige/Etsch Valley bottom and
on southwest-exposed slopes. This might be explained by a combination
of climatic, topographic, and anthropogenic factors. The Adige/Etsch
Valley is climatically warmer due to the lower altitude. Moreover, the
western-southwestern exposed side of the valley is generally warmer,
which can affect the mineralization of SOM mineralization. Finally, the
Adige/Etsch Valley has a longer tradition of intensive agricultural
practices where organic matter degradation processes may occur, re-
sulting in relatively greater decomposition (Bogunovic et al., 2017;
Paltineanu et al., 2016). Nevertheless, patterns of SOM require further
investigation because high SOM is also found on northern-exposed al-
luvial fan in the Venosta/Vinschgau Valley, as well as on the eastern-
exposed slopes of the Adige/Etsch Valley. Moreover, South Tyrol vi-
neyards and apple orchards have traditionally had grasses between
planting rows. Hence, organic matter losses should be very limited
(Atucha et al., 2011; Mcgourty and Reganold, 2005). Finally, the in-
tegration of soil texture, SOM, and pH data with the existing soil che-
mical data not analysed in this study can provide further information
for estimating the spatial availability of specific nutrients (Fageria
et al., 2002; Singh, 1994), estimating plant water availability (Saxton
and Rawls, 2006), estimating soil water hydraulic properties for hy-
drological and hydropedological application (Thompson et al., 2012),
designing fertilisation management (Grant, 2016), carrying out ecolo-
gical risk assessments (Suter II, 2016), and improving overall soil se-
curity (McBratney et al., 2014).

5. Conclusions and outlook

Demand for sustainable agriculture by regulatory bodies and their
sustainable management guidelines can operate as interlinks and
driving forces for a fruitful cooperation between farmers, who provide
data, and scientists, who can enhance the current understanding of
agricultural systems and help formulate sustainable agricultural pro-
gram policy. Indeed, public administrators can make informed deci-
sions and promote a promising framework for extensive and long-term
soil monitoring in agricultural areas. Linking all individual farmers'
agronomic practices can potentiate soil knowledge to address issues
beyond the individual farmer's agronomic production. The resulting
maps of pH, SOM, and soil texture provide further insights to char-
acterize the dynamics of mountain valleys shaped by the complex in-
terplay of postglacial evolution, geomorphological processes, and an-
thropogenic influences. These results can be used to optimize land
management at large spatial scales. This study presents only a few of
the available variables; further studies should consider the rest of the
data to digitally assess spatial patterns of nutrient availability and carry
out ecological risk assessments for sustainable agriculture. An in-
tegrated farming long-term data collection program over time will en-
hance the reliability of the produced maps and the estimated trends and
changes in physical-chemical soil properties. This would open new
paths toward comprehensive monitoring in the field of sustainable
agriculture and creation of long-term plans for soil security.
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