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A B S T R A C T   

Intensive agricultural management significantly affects soil chemical properties. Such impacts, depending on the 
intensity of agronomic practices, might persist for several decades. We tested how current soil properties, 
especially heavy metal concentrations, reflect the land-use history over a 24,000 ha area dominated by intensive 
apple orchards and viticulture (South Tyrol, ITA). We combined georeferenced soil analyses with land-use maps 
from 1850 to 2010 in a space-for-time approach to detect the accumulation rates of copper and zinc and un-
derstand how present-day soil heavy metal concentrations reflect land-use history. Soils under vineyards since 
the 1850s showed the highest available copper concentration (median of 314.0 mg kg-1, accumulation rate 
between 19.4 and 41.3 mg kg-1⋅10 y-1). Zinc reached the highest concentration in the same land-use type (median 
of 32.5 mg kg-1, accumulation rate between 1.8 and 4.4 mg kg-1⋅10 y-1). Using a random forest approach on 
44,132 soil samples, we extrapolated land-use history on the permanent crop area of the region, reaching an 
accuracy of 0.72. This suggests that combining current soil analysis, historical management information, and 
machine learning models provides a valuable tool to predict land-use history and understand management 
legacies.   

1. Introduction 

Soil is a complex medium and one of the most valuable assets for 
humankind (Council of Europe, 1973). It is a dynamic, living, 
non-renewable resource that plays several vital roles in terrestrial eco-
systems and sustains plant and animal life on Earth (Doran et al., 1996, 
1994). Soil degradation, such as erosion, fertility loss, salinity, acidifi-
cation, soil carbon decline, and compaction are recognized as threats by 
the European Union (Commission of the European Communities (CEC), 
2006; Stolte et al., 2016). These threats have detrimental consequences 
for secure supplies of food, clean freshwater, landscape diversity, and 
the production of renewable energy sources (Carré et al., 2017; Koch 
et al., 2013). Therefore, soil security, associated with the maintenance 
and improvement of soil resources, should be considered as a global 
existential challenge (Bouma, 2019; McBratney et al., 2014). 

Heavy metal accumulation in soils is a major risk for soil function 
and fertility and can occur due to a specific geology or the occurrence of 
ore deposits (Abrahams, 2002; Zhang and Wang, 2020). However, heavy 

metals are mostly released into the environment by human activity, 
agricultural practices in particular (Vareda et al., 2019). Specifically, 
fertilizer and animal manure application, sewage sludge use, and 
pesticide application are assumed to be major causes of heavy metal 
pollution in agricultural soils (Guo et al., 2018; Wagner, 1993). Pesti-
cides used in the past may have contained a significant amount of 
metals; in addition, insecticides and fungicides may be based on com-
pounds containing copper (Cu), mercury (Hg), manganese (Mn), lead 
(Pb), and zinc (Zn), e.g., fungicidal sprays such as Bordeaux mixture 
(CuSO4) and Cu oxychloride for Cu (Jones and Jarvis, 1981), and 
Mancozeb® for Zn (National Center for Biotechnology Information, 
2017). Under certain soil characteristics (low pH, low soluble organic 
carbon) or extent of plant cover (e.g., absence of grass uptake), heavy 
metals added to soils through biosolid applications can be leached 
downwards through the soil profile and may contaminate groundwater 
(McLaren et al., 2005; Sharma et al., 2017). 

Soils may widely differ in their response to heavy metal accumula-
tion depending on abiotic factors affecting the metal availability, mainly 
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pH and soil organic matter (SOM). In addition, heavy metals can affect 
soil microbial community biomass, composition, and diversity (Li et al., 
2017; Smolders et al., 2004; Zhen et al., 2019). Several studies have 
reported a decrease in microbial biomass (Kuperman and Carreiro, 
1997) as well as alterations of microbial diversity (Abdu et al., 2017) 
and structure as a consequence of heavy metal accumulation (Borruso 
et al., 2015; Cavani et al., 2016; Giller et al., 2009; Linton et al., 2007). 

Both Cu and Zn are essential plant micronutrients. However, when 
their available fractions exceed certain thresholds, they might induce 
toxicity symptoms to plants and soil organisms (Brunetto et al., 2016). 
For instance, Cu causes a decrease in the number and diversity of Col-
lembola and earthworms, as well as a decline in microbial biomass and 
inhibition of cyanobacterial metabolic activities (Karimi et al., 2021; 
Pipe, 1992). Soil respiration activity is severely compromised and 
limited at high Cu concentrations (Fritze et al., 1996; Romero-Freire 
et al., 2016). Meanwhile, Zn can negatively influence the activity of 
microorganisms and earthworms, retarding the breakdown of organic 
matter (García-Gómez et al., 2020; Greaney, 2005; Yausheva et al., 
2016) and, subsequently, the biogeochemical cycles of the nutrients 
linked with this process. Furthermore, Zn decreases bacterial population 
and inhibits phosphatase, urease, and dehydrogenase activities in 
metal-polluted soils (Gao et al., 2010; Rajput et al., 2018). Moreover, 
high levels of Cu and Zn can cause unbalanced uptake of other essential 
nutrients and synergistic or antagonistic interactions among elements 
(Marastoni et al., 2019). 

Among agricultural systems, soil characteristics differ in space and 
time according to the agricultural practices applied. In recent years, 
integrated geographical information science and multivariate statistical 
analysis have been used to assess the heavy metal distribution and 
temporal trends in soils (Hou et al., 2017). Space-for-time substitutions 
are defined as measuring the effect of a long-lasting process by studying 
a spatial gradient that replicates that process in space and are widely 
used in soil science (Huggett, 1998; Lucas et al., 2019; Stevens and 
Walker, 1970). Space-for-time substitutions form chronosequences, 
which have been used to evaluate the concentration of pesticides in 
reclamation areas under different land-uses (Bai et al., 2015), metal 
concentrations in urban soils (Howard and Olszewska, 2011), and 
adsorption of copper in flood plains (Graf et al., 2007). 

High-resolution time series of digital land-use maps are becoming 
increasingly available, covering all continents, such as CORINE Land 
Cover project in Europe. These multi-temporal land-use/land-cover se-
ries combined with soil survey databases provide an enormous potential 
to evaluate the relationship between soil characteristics and land-use 
history (Baude et al., 2019; Della Chiesa et al., 2019b; Hengl et al., 
2017). Moreover, machine learning algorithms (Hastie et al., 2009; 
Yaseen, 2021) strongly support this approach in data exploration, 
pattern recognition, modeling, and prediction. For instance, digital soil 
mapping has received considerable benefits in spatial interpolation from 
machine learning algorithms (Wadoux et al., 2020) such as random 
forest (Hengl et al., 2007; Liaw and Wiener, 2014), and was successfully 
applied in modeling heavy metal distribution in agricultural ecosystems 
(Hu et al., 2020). Random forest is a relatively simple and accurate al-
gorithm when dealing with several covariates and aiming mainly at 
predicting a response or class (Breiman, 2001; Fawagreh et al., 2014). 

This study used a robust data set of about 44,132 soil samples from 
different management types and analyzed their variability based on 
historical land-use maps that date back to the 19th century through 
machine learning algorithms. With this interdisciplinary combination of 
soil science, landscape research, and geospatial modeling, we aimed at i) 
describing the temporal accumulation of Cu and Zn in intensively used 
permanent crop soils, ii) investigating how current soil heavy metal 
concentrations reflect land-use history, and iii) demonstrating the 
feasibility of retracing land-use history by modeling its effect on soil 
characteristics. 

2. Materials and Methods 

2.1. Study area 

This study focused on the topsoil (0–20 cm) from highly productive 
agricultural areas in the Province of Bolzano, South Tyrol (Northern 
Italy). South Tyrol is Europe’s largest apple-growing area, with orchards 
covering around 19,000 ha and vineyards covering about 5500 ha. Apple 
orchards are managed with integrated, conventional, and organic 
farming (the latter being practiced in approximately 10% of the total 
area), with a density between 3000 and 5000 plants ha-1. Vineyards are 
mostly cultivated with conventional farming (organic farming being 
practiced in around 1% of the total area) with 4000 to 6000 plants ha-1, 
mostly Guyot pruned. The study area has a continental climate with 
maximum precipitation in summer and relatively cold and dry winters 
(Adler et al., 2015). The total annual precipitation is 450–850 mm at the 
cultivated valley bottom. The valley sediments, where most of the per-
manent crops grow, are derived from flood plain post-glacial deposits 
starting the Holocene era until recent years (Avanzini et al., 2003). 
Furthermore, large alluvial fans are part of this geological formation 
(Jarman et al., 2011). The texture of these sediments is diverse, including 
clays, silts, sands, and gravels. The depth of the Holocene sediments 
varies from 1 to 100 m. Furthermore, glacial Pleistocene sediments are 
also present throughout the valleys, mainly with Tillite (silt-sands with 
stones). On both valley slopes, covered primarily with vineyards, hard 
rocks such as rhyodacitic lavas and granodiorites come to the surface 
(Avanzini et al., 2003; Bargossi et al., 2010). According to the Ecope-
dological Map of Italy (Rusco et al., 2003) the study area is included in 
sub-region “02 o” “Large valley bottoms of central Alps” and sub-region 
“02 n” “ Medium and lower portions of the sides of the alpine valleys.” 
These two sub-regions have Dystri-Skeletic Fluvisol, Fluvi-Dystric Cam-
bisol, Skeleti-Calcaric Fluvisol, Dystri-Skeletic Cambisol, Skeletic 
Umbrisol, and Eutric Cambisol, as dominant soil types based on FAO 
classification (IUSS Working Group WRB, 2015). 

To assess the effect of land-use history on heavy metal concentration, we 
used a subset of about 7400 ha as the training area, i.e., around one-third of 
the total study area (Fig. 1). The training area is mainly located in the 
Venosta/Vinschgau and Adige/Etsch Valley and was selected to represent 
the typical agricultural development pattern in the region, i.e., long-term 
apple orchards and vineyards as well as areas with a high land-use turn-
over throughout the last 150 years (Tasser et al., 2009). Then, exploratory 
data analysis and land-use prediction were applied to the entire study area 
(South Tyrolean orchards and vineyards; 24,400 ha in total). 

2.2. Land-use history 

Digital land-use maps dating from the 1850s were derived from 
historical maps and aerial photos provided by the Autonomous Province 
of Bolzano/Bozen. The Francisco-Francisco-Josephinian Cartographical 
Register (third cartographical register of the Austrian crownlands; 
1:25,000) was used as the starting point. These historical land-use maps 
distinguish with specific symbols the areas between apple orchards and 
vineyards. Additionally, the quality of the aerial photos from 1950 on-
wards was also sufficient to identify the main land-use types used in this 
analysis. To corroborate the resulting land cover/land-use maps, current 
and historical data on the meta-level were used, e.g., agricultural census 
and village chronicles. The land-use maps produced were slightly space- 
time discontinuous, as they rely on the area and year of the historical 
map or aerial photos taken throughout the years. Thus, we grouped 
these maps in three time steps: a) the 1850s, which included maps drawn 
up from 1855 to 1861, b) the 1950s, which included maps from 1954, 
1955, and 1956, and c) the 1980s, which included maps from 1981, 
1982, and 1985. Finally, we identified the 2010s land use with ortho-
photos from 2013. A minimum homogeneous area of 4 ha was defined 
for the digitalization of the historical maps and photos, and smaller areas 
with mixed land-use types were classified according to the prevailing 
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type. To address the specific research questions of this study, we clus-
tered the land-use categories as follows: “Grassland” (containing mainly 
meadows and pastures and a small percentage of arable land), “Vine-
yards,” “Orchards,” and “Settlements” (containing settlements and other 
artificial surfaces). 

2.3. Soil samples dataset and analysis 

This study was based on a total of 44,132 soil samples collected by 
farmers and analyzed by the Laboratory of Agricultural Chemistry, 
Public Research Centre of Agriculture and Forestry, Laimburg (Dalla Via 
and Mantinger, 2012). A minimum of 15 soil sub-samples from every 
agricultural field was collected at 0–20 cm depth and 1 kg of mixed soil 
material was used for analysis. Overall, the mean sample density in the 
study area was 54 points/km2. For a detailed description of the soil 
sampling framework, please refer to Della Chiesa et al. (2019a, 2019b). 
Soil samples were collected between 2006 and 2016. A total of 38,613 
samples were collected from apple orchards and vineyards, while 316 
were collected from grasslands. Approximately 59% of soil samples in 
the dataset have been georeferenced using the cadastral code (Della 
Chiesa et al., 2019b). Among these, 5203 georeferenced samples 
(11.8%) originated from the training area (Fig. 1). Soil analysis was 
carried out (parameters listed in Table 1) to gain a better understanding 
of soil variability and the relationship between heavy metals, other soil 
characteristics, and land use. 

Texture classes were estimated by feel (Thien, 1979) according to 
the German classification (AD-HOC AG, 2005). We converted each 
textural class to percentage values using the centroid of the classes 
(clay, sand, and silt). This simplified the comparison with other vari-
ables in the exploratory data analysis. The nutrient elements in the 
dataset were extracted using methods to assess the available plant 
fraction (Table 1) (Accredited laboratory under ISO 17025:2005, 
methods: ISO 10694:1995, DIN EN 15933:2012, ÖNORM L 1087:2012 
A.5). Total Cu and Zn could be compared with available Cu and Zn, 
keeping in mind that available values are always lower than the total Cu 
and Zn (Lončarić et al., 2010; Nogueirol et al., 2010; Romić et al., 
2004). As scientific literature commonly refers to total Cu and Zn, for 
comparison purposes, we built a multivariate linear model that 

converted the CaCl2/DTPA (CAT) extraction to aqua regia extraction 
because our dataset contained 693 soil samples analyzed with both CAT 
and aqua regia. 

For the land-use history analysis in the training areas, only the 
georeferenced samples were used. The soil dataset, together with the 
cadastral information and all land-use maps, were stored in a PostgreSQL 
database with the PostGIS extension. This approach greatly facilitates data 
exploration and analysis and allows the connection with the R environ-
ment (R Core Team, 2018) to deepen the statistical analysis further. 

2.4. Exploratory data analysis 

We conducted an exploratory data analysis that comprised a prin-
cipal component analysis (PCA) and a distribution visualization of Cu 
and Zn concentrations by land use. PCA was carried out in R with the 
package FactoMineR (Lê et al., 2008) on the following variables: pH, 
SOM, phosphorous, potassium, magnesium, manganese, boron, zinc, 
copper, clay (%), and sand (%). Land use was included as a supple-
mentary categorical variable. The variables were scaled to unit variance 
before computation. We used the dimdesc function of the FactoMineR (Lê 

Fig. 1. Study area, main valleys of South Tyrol, Italy. Dark polygons represent the training areas, where both land-use history and soil samples are available.  

Table 1 
Measured parameters, analysis methods (VDLUFA, 1991), units and variable 
type.  

Parameter Analysis method Units Variable type 

SOM Elemental analysis % Numerical 
pH CaCl2 glass electrode – Numerical 
Soil texture Feel test Soil texture class Categorical 
P2O5 CAL colorimetry mg 100 g-1 Numerical 
K2O CAL flame photometry mg 100 g-1 Numerical 
Mg CAT ICP-OES mg 100 g-1 Numerical 
B CAT ICP-OES mg kg-1 Numerical 
Mn CAT ICP-OES mg kg-1 Numerical 
Cu CAT ICP-OES mg kg-1 Numerical 
Zn CAT ICP-OES mg kg-1 Numerical 

ICP-OES, inductively coupled plasma optical emission spectrometry; CAL, cal-
cium acetate-lactate; CAT, extraction solution 0.01 M CaCl2 + 0.002 M DTPA- 
solution. 
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et al., 2008) package to identify variables and the most characteristic 
categories according to each component of the PCA. Results include 
significance tests with a significance threshold of 0.05 and are shown in 
the Supplementary Materials. 

2.5. Modeling and predicting land-use history 

We combined land-use history derived from land-use maps and soil 
analysis data by building a random forest model (Liaw and Wiener, 
2014). The model is a classifier that uses soil physical and chemical 
properties to predict the probability of a sample belonging to a partic-
ular chronosequence class. The independent variables of the model were 
the same as those used for PCA (Supplementary Table S1). The depen-
dent variable is a chronosequence class of land-use history in the four 
available time steps (1860, 1950, 1980, 2010) so that for each time step, 
we have three possible land-use types (grasslands, orchards, or vine-
yards). We used the random forest implementation in the Python library 
scikit-learn (Pedregosa et al., 2011). Random forest can also provide 
model accuracy and variable importance and output the significance of 
the importance measures for each predictor on the response variable. 
Therefore, it was a good choice for this case study, where wanted to 
predict a certain land-use history using soil physical and chemical data. 
We retained 15% of the samples to use them as an independent vali-
dation set to measure model accuracy and stratified the random choice 
on the chronosequence classes as these were uneven in the dataset. We 
presented each independent variable’s importance in defining the model 
(Fig. 7), which is useful for understanding which variables had greater 
links to land-use history (dependent variable). We presented model ac-
curacy with the overall accuracy, cross-entropy loss, and out-of-bag 
(OOB) accuracy. A confusion matrix and a classification report with 
precision, recall, f1-score, and support were also provided (Supple-
mentary Tables S3 and S4). Then, we used the model to predict the 
chronosequence classes of the soil samples (around 38,600) lacking such 
information and presented the prediction in a map showing soil sample 
locations per chronosequence class. 

3. Results and Discussion 

3.1. Land-use history 

From the 1850s onward, land use changed mainly from grasslands to 
permanent crops (Figs. 2 and 3) and started increasing before the 1950s. 
Vineyards initially increased after 1850 and remained stable thereafter, 
while apple orchards are still currently gaining space and cover most of 
the training area. In the 2010s, the percentages of agricultural land use 
(excluding settlements) were 73.1%, 22.4%, and 4.5% in orchards, 
vineyards, and grasslands/arable land, respectively (Fig. 3). This 
specialization and intensification of agricultural management within the 
study area occurred with different timing and magnitude. In the Adige/ 
Etsch Valley, permanent crops began earlier, with a significant area 
covered by vineyards for centuries (Tasser et al., 2007). In the Veno-
sta/Vinschgau Valley, almost no vineyards were present (Fig. 2), and the 
change was mainly from hay meadows and arable land to apple or-
chards. The abrupt conversion from extensive to intensive farming 
contrasted with that of other agricultural regions in the Alps (Tasser 
et al., 2007). However, it is a development that is in line with the global 
trend of land-use intensification (Ellis et al., 2013). This change in 
management apparently affects soil quality and functions (Adhikari and 
Hartemink, 2016; Herrick, 2000; Vogel et al., 2019), biogeochemistry of 
agricultural and mountain soils (Verchot et al., 1999), and C fluxes 
(Mojeremane et al., 2010). Moreover, intensive agriculture decreases 
SOM (Pulleman et al., 2000; Riezebos and Loerts, 1998), whereas tillage 
can reduce soil stability (Herrick, 2000) and increase bulk density, 
which in turn alters several soil physical properties by reducing 
permeability to air, water, and roots (Batey, 2009). 

3.2. Exploratory data analysis 

Although this study focused on Cu and Zn, because an overall 
characterization of the soil samples and their land use is crucial for a 
better understanding of the correlation between metal concentrations 
and other soil characteristics, we also performed an exploratory data 
analysis on all available soil parameters. Fig. 4 shows the PCA results for 
all the available samples from vineyards, orchards, and grasslands in 
South Tyrol. Grassland samples were distributed across all agricultural 
land in South Tyrol. Supplementary Fig. S1 shows the contribution of 
soil variables to each principal component (PC). 

The first and second principal components (PC1 and PC2, respec-
tively) explained 43.3% of the total dataset variance and were charac-
terized by variables such as P, K, SOM, Mg, and pH. This indicated that a 
large part of soil variability was explained by chemical characteristics, 
likely a consequence of land management and fertilization. Neverthe-
less, 10.6% of the variance was explained by PC4, which was strongly 
characterized by Cu. In this component, vineyard soils were highly 
correlated with Cu, confirming the patterns shown in Fig. 5. Further-
more, some orchard soils were grouped with vineyards, probably owing 
to land-use changes. In fact, in the study area, soils that were historically 
cultivated as vineyards were recently converted to apple orchards. Our 
results confirmed a memory effect (Farlin et al., 2013) for those soils in 
terms of Cu concentrations, appearing closer to vineyard soils than to 
other apple orchard soils. 

3.3. Copper and zinc accumulation 

This work was original as it considered the available fraction of 
heavy metals in soils (CAL method, Önorm L 1075 - Austrian Standard), 
while most studies and national and international regulations on 
threshold values report the total metal content (Carlon, 2007). However, 
the available content is always a fraction of the total, and the correlation 
between total and available concentration was mostly linear in previous 
studies (Lončarić et al., 2010; Nogueirol et al., 2010; Romić et al., 2004). 
These studies suggested that total Cu content is about 2-fold higher than 
that of available Cu (DTPA extraction, Nogueirol et al., 2010). Con-
trastingly, this equation was found for Zn according to Lončarić et al. 
(2010): Znavailable-DTPA = Zntotal-aqua regia * 0.015 + pH *0.259. To the 
best of our knowledge, there are no reports presenting regressions be-
tween the CAT method used in this study and the aqua regia method 
used for determining the total metal fraction (Hseu et al., 2002). 
Therefore, we fitted a multivariate linear model on our data, and the 
output for Cu and Zn was described in Table 2. 

Models had an R2 of 0.98 and 0.92 for Zn and Cu, respectively, were 
statistically significant and made it possible to compare the results of 
this study with studies that only considered aqua regia extraction. These 
comparisons must be treated with caution as the model has been built 
using our dataset and could not be as accurate on soils that fall outside 
the model domain (e.g., high or low pH or Cu). Nevertheless, the number 
of samples (i.e., 693) was 10–30-fold larger than those in other studies 
(Hseu et al., 2002; Lončarić et al., 2010) and could contribute to a robust 
knowledge base to the scientific community. 

Based on the main land-use changes throughout the last 160 years, 
we obtained six prevailing chronosequence classes and discarded those 
with fewer than 15 observations.  Figs. 5 and 6 show the distribution of 
available Cu and Zn concentrations in soils grouped according to the 
chronosequence classes. The reference values for available Cu and Zn 
(calculated as the median concentration of nearby permanent grasslands 
in similar environmental conditions) were 4 and 10 mg kg-1, respec-
tively. Fig. 5 showed that soils cultivated as vineyards, at least from the 
1950s (class 1 and 2), showed Cu concentrations 4- to 65-fold higher 
than the reference values. Additionally, soils cultivated as vineyards 
since the 1850s showed the highest Cu concentration (median and ab-
solute maximum value 314.0 and 752.0 mg kg-1, respectively), followed 
by that of soils cultivated as vineyards since the 1950s (median 
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Fig. 2. Land-use maps in the study area at different time steps: 1850s, 1950s, 1980s, 2010s. Blue = Grasslands, Black = Settlements, Yellow = Orchards, 
Red = Vineyards. These areas correspond to the dark training areas of Fig. 1. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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252.0 mg kg-1) and by that of soils cultivated as vineyards since the 
1950s that changed to orchards in the 2010s (class 3, median of 
135.5 mg kg-1). Classes 1, 2, and 3 had a high standard deviation (163.5, 
142.0, and 104.0, respectively) and were thus not significantly different 
from each other in Cu content but were significantly different from soils 
cultivated as grasslands and orchards only (Fig. 5). Among orchards, 
orchards since the 1950s (Class 4) showed the highest Cu concentration 
(median of 21.0 mg kg-1) followed by orchards since the 1980s (Class 5, 
median of 15.0 mg kg-1) and those soils with orchards only since the 
2010s (Class 6, median of 13.0 mg kg-1). These last three groups were 
significantly different from each other in Cu content, proving a temporal 
accumulation of Cu in the soil, but one order of magnitude lower than 
that in vineyards. For vineyards, we estimated a linear accumulation 
rate of available Cu between 19.4 and 41.3 mg kg-1⋅10 y-1, while for 
apple orchards, this value was between 2.8 and 3.6 mg kg-1⋅10 y-1. 

As observed for Cu, Zn concentrations increased with the age of the 
permanent crop. Soils cultivated as vineyards since the 1860s, 1950s, 

and those that were vineyards after the 1950s and then changed to or-
chards in the 2010s (classes 1, 2, and 3, respectively) showed similar 
concentrations with medians of 32.5, 28.0, and 30.5 mg kg-1, respec-
tively, and no statistical differences among them. This lack of difference 
posed an uncertainty on which cultivation, vineyards, or orchards, 
contributed more to Zn accumulation in the soil. Nevertheless, soils 
cultivated as vineyards since the 1950s had a Zn concentration 1.4-fold 
higher than that of orchards of the same age, and the difference was 
statistically significant (Fig. 5). Comparing Zn concentration between 
soils that were cultivated only as grasslands/arable land or orchards, the 
highest concentration (median of 18.0 mg kg-1) was seen in those 
cultivated as orchards since the 1950s (Class 4) followed by that of or-
chards since the 1980s (Class 5, median of 13.0 mg kg-1), and, finally, 
that of orchards since the 2010s (Class 6, median of 9.0 mg kg-1), with 
significant differences between them. This proved the temporal accu-
mulation of Zn in the soil for these land-use classes. For vineyards, we 
estimate a linear accumulation rate of available Zn between 1.8 and 

Fig. 3. Land-use change fluxes in the Vinschgau and Etsch Valleys. Every bar has a color representing land use with heights proportional to the corresponding area, 
every stack of bars represents a time step starting from the 1850s onto 2010s. 

Fig. 4. Principal Component biplot, both individuals and variables are plotted. Land use is used as explanatory categorical variable. The land-use history is described 
using colors (blue: grasslands, yellow: orchards, red: vineyards). a) The first principal component (PC1) and the second principal component (PC2) are shown. b) The 
third principal component (PC3) and the fourth principal component (PC4) are also shown. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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4.4 mg kg-1⋅10 y-1, while this value was between 2.3 and 3.0 mg kg- 

1⋅10 y-1 for apple orchards. 
Several studies have reported metal accumulation in agricultural 

soils (Gulf et al., 2003; Huang and Jin, 2008; Merry et al., 1983; Morgan 
and Bowden, 1993). However, to the best of our knowledge, none fol-
lowed a space-for-time approach to compare different land uses and 
their effect on heavy metal accumulation. In this study, the calculated 
accumulation rate has the disadvantage of land-use maps holding in-
formation of cultivation patterns only for four time-steps within a 
160-year period. Agricultural practices might have changed during the 
decades, affecting Cu and Zn accumulation in soil. In addition, within 
the same land-use type, management intensity might have increased, e. 
g., plant density has doubled from 2000 plants ha-1 in the 1950s to the 
current 3000–5000 plants ha-1 (personal communication from local 
farmers). Therefore, we only estimated an average of what happened in 
the past, with consequent loss of predictive power for the future. 
Nevertheless, the accumulation rate gives us a baseline on the past that 
can be used to interpret present and future accumulation. For instance, 
Morgan and Bowden (1993) stated that Cu accumulation is clear over 
time but is not simply a function of age, as factors other than time, such 
as SOM and pH, may have an effect. 

Copper is related to agricultural pest management in vineyards and 
orchards with the use of Bordeaux mixture (Cu sulfate) and Cu oxy-
chloride (Jones and Jarvis, 1981) as well as fertilizers and manure 
(Alloway, 2013). Li et al. (2005) reported an average annual total Cu 
increase in apple orchards ranging from 2.5 to 9 mg kg-1 y-1. These con-
centrations were obtained by nitric acid extraction. Aqua regia extracts 
about twice the Zn extracted by nitric acid (Száková et al., 2000). By 
translating the values of nitric acid to aqua regia and then to the available 
fraction, we can conclude that the accumulation rate we found in orchards 
is about twice that found by Li et al. (2005). In the soils of this study, Cu 
accumulation over time has led to concentrations that often exceed 
background values in European soils, which are between 4 and 40 mg kg-1 

of total Cu (Gawlik and Bidoglio, 2006a; Reimann et al., 2018). Concen-
trations above 150 mg kg-1 of total Cu can be toxic to annual plant species 
(Vácha et al., 2014) and inhibit microbial growth and activity (Aoyama 
and Nagumo, 1996). According to our model, this concentration range 
would correspond to approximately 80 mg kg-1 of available Cu, with 
18.2% of the samples in this study being above this limit. 

Addition of Cu to soils may result in pH changes that could directly and 
negatively affect soil microbial biomass and diversity (Fernández-Calviño 
and Bååth, 2016). Although the concentrations in this study could be as 
high as 600 mg kg-1 of available Cu, this metal was mainly accumulated in 
vineyards and in the topsoil layer (Merry et al., 1983), as confirmed by the 
low concentrations detected in the 20–40 cm layer, data not shown. As 
accumulation was confined only to the topsoil, there should be no concern 
about vineyard growth inhibition or phytotoxicity, as grapevine plants 
have a rather deep rooting system, depending on the rootstock (Smart 
et al., 2006). In addition, grapevine plants can adopt a range of detoxi-
fication mechanisms to cope with heavy metal-induced stress, and some 
agronomic practices can further alleviate Cu toxicity (Bachmann et al., 
1999; Brunetto et al., 2016; Hall, 2002; Rosaria et al., 2010). Neverthe-
less, in this study, several apple orchard soils had relatively high Cu 
concentrations owing to their long-lasting vineyard land-use history. 
Moreover, apple orchards are regularly plowed every 20–30 years, 
depending on the management. This could lead to a Cu distribution 
throughout the soil profile in the long term. Although few apple orchards 
have this land-use history, little is known about the potential transfer of 

Fig. 5. Cu concentrations (available fraction) distribution according to the chronosequence classes. The samples are included in different boxplots according to a 
common land-use history. The land-use history is described using colored squares (blue: grasslands, yellow: orchards, red: vineyards) and the years written inside the 
squares. The vertical blue dashed line refers to the background value. Accumulation rate values are given for each chronosequence class. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Summary of the multivariate linear model parameters to convert aqua regia 
extraction of Cu and Zn into CAT extraction.  

Element Term Estimate std.error t-statistic p.value 

Cuar Cucat  1.64  0.01  157.51 * 
pH  4.72  0.15  31.52 * 

Znar Zncat  1.61  0.13  12.69 * 
pH  16.99  0.37  46.01 * 

Element represents dependent variables (Cuar: Copper extracted with aqua regia, 
Znar: Zinc extracted with aqua regia). Term includes independent variables 
(Cucat: Copper extracted with CAT, Zncat: Zinc extracted with CAT). Estimate 
represents the coefficient for each independent variable. 

* indicated p-value ≤ 0.001. 
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Cu from soil to fruits, which requires further investigation (Chojnacka 
et al., 2005; Park and Cho, 2011; Wang et al., 2015a, 2015b). Therefore, 
future land-use changes to crops with shallower root systems or vineyard 
replanting systems could induce Cu toxicity symptoms, affecting the 
sustainability and, potentially, productivity and quality of these agro-
ecosystems (Brun et al., 2001; Fernández-Calviño et al., 2008; Michaud 
et al., 2007). Soil management practices should also consider the highly 
dynamic interactions occurring in the rhizosphere due to intimate in-
teractions among plant roots, soil, and microorganisms, which determine 
the availability and acquisition of essential nutrients and the toxicity of 
heavy metals such as Cu and Zn. 

Similar to Cu, Zn is also related to agricultural pest management in 
vineyards and orchards using Zn-containing fungicides, such as Man-
cozeb® (National Center for Biotechnology Information, 2017), and 
fertilizers (Alloway, 2013). Zn is frequently applied in permanent crops 
and accumulates in soils over time (Bahadur et al., 1998; Orphanos, 
1982; Weingerl and Kerin, 2000). Moreover, the concentrations 
observed in this study are comparable with background concentrations 
in European soils, i.e., between 17 and 85 mg kg-1 of total Zn (Gawlik 
and Bidoglio, 2006b). Nevertheless, considering the conversion from 
CAT to aqua regia, older permanent crops reached values that were 
2-fold higher than the upper limit of the background values. Phytotox-
icity or microbial toxicity can be expected only when the total content of 
Zn exceeds 700 and 500 mg kg-1, respectively (Podlesakova et al., 2002; 
Smolders et al., 2004). According to our model, this concentration cor-
responds to an available Zn range of 255–382 mg kg-1, and no samples in 
this study reached this limit (maximum value of 195 mg kg-1 of available 
Zn, Fig. 5). Therefore, Zn toxicity on plants or microbial communities is 
unlikely to occur in the study area. In addition, slightly acidic and 
alkaline soil conditions further reduce Zn toxicity to soil microorganisms 
or algae, as shown in pure (solution) cultures (Smolders et al., 2004). 
Heavy metal contamination is also considered to be involved in apple 
replant disease (Peruzzi et al., 2017) and could be taken into account 
when assessing risk factors in public places near agricultural fields 
(Linhart et al., 2019). 

3.4. Modeling and predicting land-use history 

If land-use history is strictly related to soil chemical and physical 
parameters, in particular heavy metals, this relationship can be used to 
build a model and predict the land-use history of soils with an unknown 
history. The random forest classifier generally performed well and 
yielded an overall accuracy of 0.72, an OOB accuracy of 0.72, and a 
cross-entropy loss of 0.68. Overall, the samples were grouped into six 
chronosequence classes according to land-use history (Figs. 4 and 5). 
The classification report (Table S3) and the confusion matrix (Table S4) 
described differences in performance among classes. Class 3 had the 
highest precision and recall of 0.76 and 0.90, respectively, and is also the 
most represented class in the test set (453 soil samples). Contrastingly, 
class 6 had a precision and recall of zero and was the least represented in 
the test set with only six samples. This difference in performance might 
be caused by the unbalanced dataset. Unbalanced data is often consid-
ered an issue in machine learning and data mining, but random forest 
proved to perform better than other methods with such data (Shearman 
et al., 2019). It is important to note that when the model misclassifies a 
class, it often chooses a similar class, e.g., class 6, which is classified as a 
similar class (class 5) five out of six times. Variable importance (Fig. 7) 
in the random forest classifier showed Cu, Zn, Mn, and SOM as the four 
important variables (Breiman et al., 1984), with Cu and Zn as the most 
important. This confirmed that, for the study area, heavy metals and 
SOM are the most useful soil parameters for predicting land-use history. 
If a land-use change affects SOM, this will decrease soil carbon stock, 
which will contribute to climate change. This process will cause the 
reduction of arable soil surface owing to soil degradation (Indoria et al., 
2020) and drive land-use change further (Jones and Webb, 2010). 

We used the classifier on the entire dataset (38,613 samples, 
excluding training and test data) to predict the land-use history class of 
each sample. This approach allowed the reconstruction of land-use 
history for most of the apple orchard and vineyard areas in South 
Tyrol (Fig. 8). These maps clearly showed that the oldest vineyards 
(Fig. 8f) concentrated in the southern part, as opposed to the newly 
planted orchards (class 5 and 6; Fig. 8, top-left) that were grasslands 
until the 1980s, which were in the west (Vinschgau Valley) and east 

Fig. 6. Zn concentrations (available fraction) distribution according to the chronosequence classes. The samples are included in different boxplots according to a 
common land-use history. The land-use history is described using colored squares (blue: grasslands, yellow: orchards, red: vineyards), and the years are written inside 
the squares. The vertical blue dashed line refers to the background value. Accumulation rate values are given for each chronosequence class. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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(Eisack Valley) of the study area. This classifier proved reliable and 
could be used by farmers or other stakeholders to discover the history of 
a field when this is unknown or uncertain. A better understanding of a 
field’s history could sustainably optimize agricultural management, e.g., 
by avoiding practices that cause soil contamination or decreased 
fertility. This would also allow early detection and targeted solutions for 
potential ecosystem service reductions in soils (Awuah et al., 2020). 
Moreover, the model output could be used to improve the development 
of historical land-use cartography. Land-use history affects the 
ecosystem services provided by soils (Liiri et al., 2012), and modeling its 
change in time and space could provide the base knowledge for 

ecosystem service assessment. Because its effects can last decades or 
even centuries and are ubiquitous throughout the environment, land-use 
history is of great importance for ecological science and conservation 
planning (Foster et al., 2003). 

4. Conclusions 

Combining the results from up-to-date soil analysis with information 
on land-use history proved to be a valuable instrument for under-
standing the spatio-temporal patterns of Cu and Zn concentrations and 
accumulation in intensively managed permanent crop soils. 

By testing the effect of agricultural practices and their change 
through time on soil properties, this study established that land use does 
indeed have a significant effect on Cu and Zn concentrations. We found a 
strong correlation between the amount of time an agricultural field was 
a vineyard and the concentration of soil-available Cu. The same trend, 
but with smaller effects, can be seen in apple orchards. Soil-available Zn 
presents lower accumulation rates, and the difference between apple 
orchards and vineyards is less evident. 

The derived chronosequence showed that heavy metals are still 
accumulating with current land-use practices. This process should be 
critically monitored in the future in terms of possible shifts to shallow- 
rooted crops, rhizosphere dynamics, and potential accumulation in 
agricultural products. Further research and monitoring are needed to 
understand the effect of Cu and Zn pollution on taxonomical and func-
tional fungal and bacterial diversity. In this study, model applicability is 
constrained to the land uses and land-use history classes used for 
training. However, we expect the methodological framework to be 
robust enough to be applied in other agricultural scenarios. This could 
lead to a better understanding of the legacy of historical heavy metal 
applications and improve current management practices aimed at con-
servative and sustainable food production. 

Fig. 7. Variable importance for the random forest classifier, the higher the 
value, the higher the importance. The importance of a variable is computed as 
the normalized total reduction of the Gini’s impurity (Breiman et al., 1984) 
brought by that variable. 

Fig. 8. Land-use history predicted by the random forest classifier. Black points represent sample locations. Each panel presents samples with a common land-use 
history. Colored squares indicate land-use history (blue: grasslands, yellow: orchards, red: vineyards) with the years written inside. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version of this article.) 
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Lê, S., Josse, J., Husson, F., 2008. FactoMineR: an R package for multivariate analysis. 
J. Stat. Softw. 25, 1–18. https://doi.org/10.18637/jss.v025.i01. 

Li, W., Zhang, M., Shu, H., 2005. Copper in soils of apple orchards state-of-art in China – 
research progress ( Section editor: Yong-Guan Zhu) distribution and fractionation of 
copper in soils of apple orchards state-of-art in China: research progress copper in 
soils of apple orchards. Environ. Sci. 12, 168–172. https://doi.org/10.1065/ 
espr2005.04.243. 

Li, X., Meng, D., Li, J., Yin, H., Liu, H., Liu, X., Cheng, C., Xiao, Y., Liu, Z., Yan, M., 2017. 
Response of soil microbial communities and microbial interactions to long-term 
heavy metal contamination. Environ. Pollut. 231, 908–917. https://doi.org/ 
10.1016/j.envpol.2017.08.057. 

Liaw, A., Wiener, M., 2014. Classification and Regression by randomForest. 
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Halamić, J., Haslinger, E., Hayoz, P., Hoogewerff, J., Hrvatovic, H., Husnjak, S., 
Jähne-Klingberg, F., Janik, L., Jordan, G., Kaminari, M., Kirby, J., Klos, V., 
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limit values of risk elements and persistent organic pollutants in soil for Czech 
legislation. Plant Soil Environ. 60, 191–197. 
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