Possible Role of Microcrystallinity on Surface Properties of Titanium Surfaces for Biomedical Application

Abstract

Dental implantology has grown tremendously, since the introduction of titanium. To enhance osseointegration, roughening techniques such as grit blasting, chemical etch, electrochemical anodization have been used with good results. An oxide layer mainly composed of TiO2 covers the surface of dental implants ensuring excellent corrosion resistance and chemical stability. Despite its biological role in achieving bone interlock, surprisingly, little is known about the structure of TiO2, which may be either amorphous or crystalline. Furthermore, at least two crystalline polymorph phases can be found at the bone–implant interface: anatase (tetragonal) and rutile (tetragonal). Therefore, besides the recognized importance of surface topography, energy, and charge, a more refined knowledge of surface chemistry is advisable when studying the bone–implant interface. Recently, sophisticated analysis techniques have been applied to dental implants such as Raman spectroscopy and X-ray diffraction to obtain structural-crystallographic characterization

    Similar works