198 research outputs found

    Invasive Nile tilapia dominates a threatened indigenous tilapia in competition over shelter

    Get PDF

    Preface: Advances in Cichlid Research V:Behavior, Ecology, and Evolutionary Biology

    Get PDF
    The current special issue is the fifth in a series of special issues published in Hydrobiologia exclusively devoted to cichlid fish research. The freshwater fish family Cichlidae accounts for approximately 10% of today’s teleost diversity and is naturally distributed from southern North America to southern South America, across most of Africa, to Madagascar and India. Their tremendous diversity in morphology, behavior, and ecology, as well as their astounding speciation rates and numerous species-rich adaptive radiations have enthralled biologists for decades (e.g., Boulenger, 1898; Kosswig, 1947; Fryer, 1960), such that cichlids are now among the prime model systems in evolutionary biology research (e.g., Salzburger, 2018). We are pleased to present a collection of 19 papers that investigate questions of taxonomy, biogeography, morphology, behavior, physiology, and parasitology. Many of the key ingredients of cichlid diversification are addressed by these studies, including mating, brood care and social interactions, color pattern, and body shape, as well as adaptations of the visual system and the trophic apparatus. Papers are summarized below in the order in which they appear in this special issue. We hope you enjoy reading the contributions

    Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake

    Get PDF
    The genomic causes and effects of divergent ecological selection during speciation are still poorly understood. Here, we report the discovery and detailed characterization of early-stage adaptive divergence of two cichlid fish ecomorphs in a small (700m diameter) isolated crater lake in Tanzania. The ecomorphs differ in depth preference, male breeding color, body shape, diet and trophic morphology. With whole genome sequences of 146 fish, we identify 98 clearly demarcated genomic ‘islands’ of high differentiation and demonstrate association of genotypes across these islands to divergent mate preferences. The islands contain candidate adaptive genes enriched for functions in sensory perception (including rhodopsin and other twilight vision associated genes), hormone signaling and morphogenesis. Our study suggests mechanisms and genomic regions that may play a role in the closely related mega-radiation of Lake Malawi.The work was funded by Royal Society-Leverhulme Trust Africa Awards AA100023 and AA130107 (M.J.G., B.P.N. and G.F.T.), a Wellcome Trust PhD studentship grant 097677/Z/11/Z (M.M.), Wellcome Trust grant WT098051 (S.S. and R.D.), Wellcome Trust and Cancer Research UK core support and a Wellcome Trust Senior Investigator Award (E.A.M.), a Leverhulme Trust Research Fellowship RF-2014-686 (M.J.G.), a University of Bristol Research Committee award (M.G.), a Bangor University Anniversary PhD studentship (to A.M.T.) and a Fisheries Society of the British Isles award (G.F.T.). Raw sequencing reads are in the SRA nucleotide archive: RAD sequencing (BioProject: PRJNA286304; accessions SAMN03768857 to SAMN03768912) and whole genome sequencing (BioProject PRJEB1254: sample accessions listed in Table S16). The RAD based phylogeny and alignments have been deposited in TreeBase (TB2:S18241). Whole genome variant calls in the VCF format, phylogenetic trees, and primer sequences for Sequenom genotyping are available from the Dryad Digital Repository (http://dx.doi.org/10.5061/dryad.770mc). RD declares his interests as a founder and non-executive director of Congenica Ltd., that he owns stock in Illumina from previous consulting, and is a scientific advisory board member of Dovetail Inc. We thank R. Schley for generating pharyngeal jaw data; S. Mzighani, J. Kihedu and staff of the Tanzanian Fisheries Research Institute for logistical support; A. Smith, H. Sungani, A. Shechonge, P. Parsons, J. Swanstrom, G. Cooke and J. Bridle for contributions to sampling and aquarium maintenance, the Sanger Institute sequencing core for DNA sequencing and Dr. H. Imai (Kyoto University) for the use of spectrometer in his laboratory.This is the author accepted manuscript. The final version is available from AAAS via http://dx.doi.org/10.1126/science.aac992

    Environmental DNA captures elasmobranch diversity in a temperate marine ecosystem

    Get PDF
    Abstract: Many sharks, skates, and rays (elasmobranchs) are highly threatened by the activities of commercial fisheries, and a clear understanding of their distributions, diversity, and abundance can guide protective measures. However, surveying and monitoring elasmobranch species can be highly invasive or resource‐intensive, and utilization of non‐invasive environmental DNA‐based methods may overcome these problems. Here, we studied spatial and seasonal variation in the elasmobranch community of the Western English Channel using environmental DNA (eDNA) collected from surface and bottom waters periodically over an annual cycle (2017–2018). In total we recovered 13 elasmobranch species within eDNA samples, and the number of transformed eDNA reads was positively associated with species (hourly) catch data resolved from 105‐year time series trawl data (1914–2018). These results demonstrate the ability of eDNA to detect and semi‐quantitatively reflect the prevalence of historically dominant and rare elasmobranch species in this region. Notably, eDNA recorded a greater number of species per sampling event than a conventional trawl survey in the same area over the same sampling years (2017–2018). Several threatened species were recovered within the eDNA, including undulate ray, porbeagle shark, and thresher shark. Using eDNA, we found differences in elasmobranch communities among sampling stations and between seasons, but not between sampling depths. Collectively, our results suggest that non‐invasive eDNA‐based methods can be used to study the spatial and seasonal changes in the diversity and abundance of whole elasmobranch communities within temperate shelf habitats. Given the threatened status of many elasmobranchs in human‐impacted marine environments, eDNA analysis is poised to provide key information on their diversity and distributions to inform conservation‐focused monitoring and management

    Mapping epigenetic divergence in the massive radiation of Lake Malawi cichlid fishes.

    Get PDF
    Epigenetic variation modulates gene expression and can be heritable. However, knowledge of the contribution of epigenetic divergence to adaptive diversification in nature remains limited. The massive evolutionary radiation of Lake Malawi cichlid fishes displaying extensive phenotypic diversity despite extremely low sequence divergence is an excellent system to study the epigenomic contribution to adaptation. Here, we present a comparative genome-wide methylome and transcriptome study, focussing on liver and muscle tissues in phenotypically divergent cichlid species. In both tissues we find substantial methylome divergence among species. Differentially methylated regions (DMR), enriched in evolutionary young transposons, are associated with transcription changes of ecologically-relevant genes related to energy expenditure and lipid metabolism, pointing to a link between dietary ecology and methylome divergence. Unexpectedly, half of all species-specific DMRs are shared across tissues and are enriched in developmental genes, likely reflecting distinct epigenetic developmental programmes. Our study reveals substantial methylome divergence in closely-related cichlid fishes and represents a resource to study the role of epigenetics in species diversification

    Revision of the African cichlid fish genus Ctenochromis (Teleostei, Cichliformes), including a description of the new genus Shuja from Lake Tanganyika and the new species Ctenochromis scatebra from northern Tanzania

    Get PDF
    Molecular phylogenetic evidence clearly resolves the African cichlid fish genus Ctenochromis, as defined by Greenwood (1979), as paraphyletic. Here, we redefine the genus Ctenochromis and assign Ctenochromis horei, a member of the Tropheini from Lake Tanganyika, to a new genus Shuja gen. nov. We restrict Ctenochromis to Ctenochromis pectoralis and Ctenochromis scatebra sp. nov., both of which are endemic to the Pangani River catchment in northern Tanzania, and are resolved as sister taxa in a phylogenetic analysis using genome-wide data. Ctenochromis pectoralis is the type species of the genus and described from specimens collected near Korogwe, Tanzania. The species was declared extinct in a 2016 IUCN Red List Assessment. We confirm the continued presence of a population of C. pectoralis within the Ruvu tributary linking Lake Jipe to Nyumba ya Mungu Reservoir. The new taxon Ctenochromis scatebra sp. nov. is described from Chemka Springs, and recognised on the basis of differences from C. pectoralis in tooth and jaw morphology

    Lateral line system diversification during the early stages of ecological speciation in cichlid fish

    Get PDF
    Background: The mechanosensory lateral line system is an important sensory modality in fishes, informing multiple behaviours related to survival including finding food and navigating in dark environments. Given its ecological importance, we may expect lateral line morphology to be under disruptive selection early in the ecological speciation process. Here we quantify the lateral line system morphology of two ecomorphs of the cichlid fish Astatotilapia calliptera in crater Lake Masoko that have diverged from common ancestry within the past 1,000 years. Results: Based on geometric morphometric analyses of CT scans, we show that the zooplanktivorous benthic ecomorph that dominates the deeper waters of the lake has large cranial lateral line canal pores, relative to those of the nearshore invertebrate-feeding littoral ecomorph found in the shallower waters. In contrast, fluorescence imaging revealed no evidence for divergence between ecomorphs in the number of either superficial or canal neuromasts. We illustrate the magnitude of the variation we observe in Lake Masoko A. calliptera in the context of the neighbouring Lake Malawi mega-radiation that comprises over 700 species. Conclusions: These results provide the first evidence of divergence in this often-overlooked sensory modality in the early stages of ecological speciation, suggesting that it may have a role in the broader adaptive radiation process

    Distinguishing globally-driven changes from regional- and local-scale impacts: the case for long-term and broad-scale studies of recovery from pollution

    Get PDF
    Marine ecosystems are subject to anthropogenic change at global, regional and local scales. Global drivers interact with regional- and local-scale impacts of both a chronic and acute nature. Natural fluctuations and those driven by climate change need to be understood to diagnose local- and regional-scale impacts, and to inform assessments of recovery. Three case studies are used to illustrate the need for long-term studies: (i) separation of the influence of fishing pressure from climate change on bottom fish in the English Channel; (ii) recovery of rocky shore assemblages from the Torrey Canyon oil spill in the southwest of England; (iii) interaction of climate change and chronic Tributyltin pollution affecting recovery of rocky shore populations following the Torrey Canyon oil spill. We emphasize that “baselines” or “reference states” are better viewed as envelopes that are dependent on the time window of observation. Recommendations are made for adaptive management in a rapidly changing world
    • 

    corecore