198 research outputs found
Impacts of climate change on the body size of horse mackerel in the North Sea
Clear biogeographic trends persist in the body sizes of individuals in marine communities, with smaller species and individuals within species found in warmer waters. Based on this trend (Bergmann’s Rule), communities undergoing warming at a given location are likely to become more representative of body sizes seen in warmer waters. Using fisheries independent North Sea survey data with established catchability corrections, we investigated the effect of 30 years of warming on average size and species size distributions. We found, as an example, that horse mackerel (Trachurus trachurus) is consistent with Bergmann’s Rule, with larger average sizes seen at higher latitudes. Over 30 years a significant decline in average size has occurred at several latitudes. Using a Eulerian (grid based) approach and dividing the North Sea into 82 1° x 1° cells, 56% of cells displayed size distributions shifting towards populations with higher proportions of smaller individuals. Changing size distribution correlated significantly with warming over the study period. Horse mackerel’s northern range is in the northern North Sea, indicating populations at species range boundaries may be most affected by further warming. This finding warrants further work on a wider number of species. Changing body sizes and shifts in size distributions has implications for ecosystem functioning, trophic level dynamics and the value of fisheries
Persistence of environmental DNA in marine systems
As environmental DNA (eDNA) becomes an increasingly valuable resource for marine ecosystem monitoring, understanding variation in its persistence across contrasting environments is critical. Here, we quantify the breakdown of macrobial eDNA over a spatio-temporal axis of locally extreme conditions, varying from ocean-influenced offshore to urban-inshore, and between winter and summer. We report that eDNA degrades 1.6 times faster in the inshore environment than the offshore environment, but contrary to expectation we find no difference over season. Analysis of environmental covariables show a spatial gradient of salinity and a temporal gradient of pH, with salinity—or the biotic correlates thereof—most important. Based on our estimated inshore eDNA half-life and naturally occurring eDNA concentrations, we estimate that eDNA may be detected for around 48 h, offering potential to collect ecological community data of high local fidelity. We conclude by placing these results in the context of previously published eDNA decay rates
Reproduction influences seasonal eDNA variation in a temperate marine fish community
Many factors influence how environmental DNA (eDNA) abundance varies in natural environments. One of the least studied contributors to eDNA variation is that of reproduction. Marine organisms that broadcast spawn are expected to shed increased quantities of DNA in association with the release of gametes and the elevated levels of activity associated with reproduction. To test this hypothesis at the community level, we present a year-long eDNA time-series of a temperate sea-shelf fish assemblage combined with adult fish and ichthyoplankton abundance data. Our results show that eDNA is associated with species abundance estimated by conventional fish surveys at all life stages (adult, larval, and egg), and was on average 2.3-fold more abundant during predicted fish reproductive periods
Environmental DNA can inform the trade-off between proactive and reactive strategies for crayfish conservation
The introduction of the signal crayfish Pacifastacus leniusculus to British rivers has led to ecological degradation and the decline of the native white-clawed crayfish Austropotamobius pallipes. To manage and mitigate the impact of the signal crayfish, conservation agencies and government bodies employ multiple conservation strategies. These take the form of proactive native crayfish breeding and stocking programs and reactive invasive crayfish control programs. Here, we used eDNA to assess the populations of native and invasive crayfish species across 50 sites in 10 river catchments in Norfolk, United Kingdom (UK). The sites were chosen to enable assessment of the potential of eDNA to inform proactive and reactive crayfish conservation strategies. Three of the catchments sampled were selected to assess the success of recent A. pallipes reintroduction, whereas the remaining seven were selected to better understand the distribution of each species at the landscape scale. Combining results of eDNA-based methods with net searches within an occupancy model enabled us to confidently determine the presence of P. leniusculus at eight sites, and A. pallipes at three sites, which was more than visual searches alone (five and two study sites, respectively). Neither eDNA nor net searches detected A. pallipes at sites where A. pallipes had been reintroduced. We recommend that practitioners using eDNA-based surveys for management and conservation of crayfish should consider: (1) designing eDNA surveys with an emphasis on large spatial scales to comprehensively describe the distributions of native and invasive crayfish in a region of interest; (2) work with local conservation organizations and/or government bodies to inform the selection of study sites to generate results that are meaningful to real-world conservation actions; and (3) use results from eDNA-based crayfish surveys to target limited conservation resources to appropriate proactive and/or reactive conservation actions
Non-alcoholic fatty liver disease, vascular inflammation and insulin resistance are exacerbated by TRAIL deletion in mice
Non-alcoholic fatty liver disease (NAFLD) incorporates steatosis, non-alcoholic steato-hepatitis (NASH) and liver cirrhosis, associating with diabetes and cardiovascular disease (CVD). TNF-related apoptosis-inducing ligand (TRAIL) is protective of CVD. We aimed to determine whether TRAIL protects against insulin resistance, NAFLD and vascular injury. Twelve-week high fat diet (HFD)-fed Trail -/- mice had increased plasma cholesterol, insulin and glucose compared to wildtype. Insulin tolerance was impaired with TRAIL-deletion, with reduced p-Akt, GLUT4 expression and glucose uptake in skeletal muscle. Hepatic triglyceride content, inflammation and fibrosis were increased with TRAIL-deletion, with elevated expression of genes regulating lipogenesis and gluconeogenesis. Moreover, Trail -/- mice exhibited reduced aortic vasorelaxation, impaired insulin signaling, and >20-fold increased mRNA expression for IL-1β, IL-6, and TNF-α. In vitro, palmitate treatment of hepatocytes increased lipid accumulation, inflammation and fibrosis, with TRAIL mRNA significantly reduced. TRAIL administration inhibited palmitate-induced hepatocyte lipid uptake. Finally, patients with NASH had significantly reduced plasma TRAIL compared to control, simple steatosis or obese individuals. These findings suggest that TRAIL protects against insulin resistance, NAFLD and vascular inflammation. Increasing TRAIL levels may be an attractive therapeutic strategy, to reduce features of diabetes, as well as liver and vascular injury, so commonly observed in individuals with NAFLD.Siân P. Cartland, Hanis H. Harith, Scott W. Genner, Lei Dang, Victoria C. Cogger, Melissa Vellozzi, Belinda A. Di Bartolo, Shane R. Thomas, Leon A. Adams, Mary M. Kavurm
HDL improves cholesterol and glucose homeostasis and reduces Aatherosclerosis in diabetes-associated atherosclerosis
Background and Aims. Apolipoprotein A-I (ApoA-I), the main component of high-density lipoprotein (HDL), not only promotes reverse cholesterol transport (RCT) in atherosclerosis but also increases insulin secretion in pancreatic β-cells, suggesting that interventions which raise HDL levels may be beneficial in diabetes-associated cardiovascular disease (CVD). Previously, we showed that TNF-related apoptosis-inducing ligand (TRAIL) deletion in Apolipoprotein Eknockout (Apoe-/-) mice results in diabetes-accelerated atherosclerosis in response to a “Western” diet. Here, we sought to identify whether reconstituted HDL (rHDL) could improve features of diabetes-associated CVD in Trail-/-Apoe-/- mice. Methods and Results. Trail-/-Apoe-/- and Apoe-/- mice on a “Western” diet for 12 weeks received 3 weekly infusions of either PBS (vehicle) or rHDL (containing ApoA-I (20 mg/kg) and 1-palmitoyl-2-linoleoyl phosphatidylcholine). Administration of rHDL reduced total plasma cholesterol, triglyceride, and glucose levels in Trail-/-Apoe-/- but not in Apoe-/- mice, with no change in weight gain observed. rHDL treatment also improved glucose clearance in response to insulin and glucose tolerance tests. Immunohistological analysis of pancreata revealed increased insulin expression/production and a reduction in macrophage infiltration in mice with TRAIL deletion. Furthermore, atherosclerotic plaque size in Trail-/-Apoe-/- mice was significantly reduced associating with increased expression of the M2 macrophage marker CD206, suggesting HDL's involvement in the polarization of macrophages. rHDL also increased vascular mRNA expression of RCT transporters, ABCA1 and ABCG1, in Trail-/-Apoe-/- but not in Apoe-/- mice. Conclusions. rHDL improves features of diabetes-associated atherosclerosis in mice. These findings support the therapeutic potential of rHDL in the treatment of atherosclerosis and associated diabetic complications. More studies are warranted to understand rHDL’s mechanism of action.Belinda A. Di Bartolo, Siân P. Cartland, Scott Genner, Pradeep Manuneedhi Cholan, Melissa Vellozzi, Kerry-Anne Rye and Mary M. Kavurm
Environmental DNA captures elasmobranch diversity in a temperate marine ecosystem
Many sharks, skates, and rays (elasmobranchs) are highly threatened by the activities of commercial fisheries, and a clear understanding of their distributions, diversity, and abundance can guide protective measures. However, surveying and monitoring elasmobranch species can be highly invasive or resource-intensive, and utilization of non-invasive environmental DNA-based methods may overcome these problems. Here, we studied spatial and seasonal variation in the elasmobranch community of the Western English Channel using environmental DNA (eDNA) collected from surface and bottom waters periodically over an annual cycle (2017–2018). In total we recovered 13 elasmobranch species within eDNA samples, and the number of transformed eDNA reads was positively associated with species (hourly) catch data resolved from 105-year time series trawl data (1914–2018). These results demonstrate the ability of eDNA to detect and semi-quantitatively reflect the prevalence of historically dominant and rare elasmobranch species in this region. Notably, eDNA recorded a greater number of species per sampling event than a conventional trawl survey in the same area over the same sampling years (2017–2018). Several threatened species were recovered within the eDNA, including undulate ray, porbeagle shark, and thresher shark. Using eDNA, we found differences in elasmobranch communities among sampling stations and between seasons, but not between sampling depths. Collectively, our results suggest that non-invasive eDNA-based methods can be used to study the spatial and seasonal changes in the diversity and abundance of whole elasmobranch communities within temperate shelf habitats. Given the threatened status of many elasmobranchs in human-impacted marine environments, eDNA analysis is poised to provide key information on their diversity and distributions to inform conservation-focused monitoring and management
- …