111 research outputs found
Investigation of Electroplastic Effect on Four Grades of Duplex Stainless Steels
Since the late 1950s, an effect of electrical current in addition to joule heating on the deformation of metals called the Electroplastic Effect (EPE) has been known. It is used nowadays in the so-called Electrically Assisted Forming (EAF) processes, but the understanding of the phenomenon is not very clear yet. It has been found that EPE increases the formability of high stacking fault energy (SFE) materials, while low SFE materials reach fracture prematurely. Since Duplex Stainless Steels (DSSs) possess a microstructure consisting of two phases with very different SFE (low SFE austenite and high SFE ferrite) and they are widely used in industry, we investigated EPE on those alloys. Tensile tests at 5 A/mm2, 10 A/mm2 and 15 A/mm2 current densities along with thermal counterparts were conducted on UNS S32101, UNS S32205, UNS S32304 and UNS S32750. The DSS grades were characterized by means of optical microscopy, X-ray diffraction and their mechanical properties (ultimate tensile strength, total elongation, uniform elongation and yield stress). An increase in uniform elongation for the electrical tests compared to the thermal counterparts as well as an increase in total elongation was found. No differences were observed on the yield stress and on the ultimate tensile strength. Un uneven distribution of the current because of the different resistivity and work hardening of the two phases has been hypothesized as the explanation for the positive effect of EPE
Microstructural and Corrosion Properties of Cold Rolled Laser Welded UNS S32750 Duplex Stainless Steel
The main goal of this work was to study the effect of plastic deformation on weldability of duplex stainless steel (DSS). It is well known that plastic deformation prior to thermal cycles can enhance secondary phase precipitation in DSS which can lead to significant change of the ferrite-austenite phase ratio. From this point of view one of the most important phase transformation in DSS is the eutectoid decomposition of ferrite. Duplex stainless steels (DSSs) are a category of stainless steels which are employed in all kinds of applications where high strength and excellent corrosion resistance are both required. This favorable combination of properties is provided by their biphasic microstructure, consisting of ferrite and austenite in approximately equal volume fractions. Nevertheless, these materials may suffer from several microstructural transformations if they undergo heat treatments, welding processes or thermal cycles. These transformations modify the balanced phase ratio, compromising the corrosion and mechanical properties of the material. In this paper, the microstructural stability as a consequence of heat history due to welding processes has been investigated for a super duplex stainless steel (SDSS) UNS S32750. During this work, the effects of laser beam welding on cold rolled UNS S32750 SDSS have been investigated. Samples have been cold rolled at different thickness reduction (\u3b5 = 9.6%, 21.1%, 29.6%, 39.4%, 49.5%, and 60.3%) and then welded using Nd:YAG laser. Optical and electronical microscopy, eddy\u2019s current tests, microhardness tests, and critical pitting temperature tests have been performed on the welded samples to analyze the microstructure, ferrite content, hardness, and corrosion resistance. Results show that laser welded joints had a strongly unbalanced microstructure, mostly consisting of ferritic phase (~60%). Ferrite content decreases with increasing distance from the middle of the joint. The heat-affected zone (HAZ) was almost undetectable and no defects or secondary phases have been observed. Both hardness and corrosion susceptibility of the joints increase. Plastic deformation had no effects on microstructure, hardness or corrosion resistance of the joints, but resulted in higher hardness of the base material. Cold rolling process instead, influences the corrosion resistance of the base material
Tribocorrosion Properties of PEO Coatings Produced on AZ91 Magnesium Alloy with Silicate- or Phosphate-Based Electrolytes
In this work, the tribocorrosion behavior of plasma electrolytic oxidation (PEO)-coated AZ91 samples was studied. In particular, two different coatings were produced and compared. One was obtained with an alkaline electrolyte containing sodium phosphate, whereas the other one was produced with an alkaline electrolyte containing sodium silicate. The coatings were characterized with SEM-EDS and XRD techniques, and after the tribocorrosion tests, the wear scars were analyzed with SEM-EDS. The tribocorrosion behavior was evaluated measuring the OCP during a pin on disk test performed in an aggressive environment. Moreover, potentiodynamic polarization and electrochemical impedance spectroscopy tests were performed, to evaluate the corrosion resistance of the different samples in the absence of wear phenomena. The behavior of all the PEO-treated specimens was compared with the one of the untreated sample. A remarkable increase in the tribocorrosion performances after the PEO treatments was observed. Moreover, the samples obtained with the electrolyte containing silicates showed higher tribocorrosion performances
Tungsten Fabricated by Laser Powder Bed Fusion
AbstractAdditive Manufacturing (AM) is the process that allows the production of complex geometry and lightweight components. Thanks to the high density of refractory metals, AM could be a possible solution for their application in the aerospace field and for biomedical or future nuclear fusion devices. Yet, Laser Powder Bed Fusion (LPBF) of refractory metals as Ta, Mo, and W faces some challenges due to their main properties: high melting point, heat conductivity, and susceptibility to cracks.The purpose of this study is to optimize the process parameters in order to produce high-density Tungsten parts by LPBF on an EOS M100 (maximum power of 170 W). The characterization is performed through physical properties measurements and microstructural analysis. Single Scan Tracks (SSTs) are produced on the top surfaces of Tungsten blocks to evaluate the process parameters that give regular-shape and continuous melt-pools. Both analytical and experimental optimizations of process parameters were performed. Micro-hardness measurements were done for dense bulk specimens. Finally, a description of susceptibility to cracks of additively manufactured Tungsten was performed
Influence of Electropulsing Treatments on Mechanical Properties of UNS S32750 Duplex Stainless Steel
Prestrained at 5% and 15% duplex stainless steel UNS S32750 specimens have been subjected to electropulsing treatments with current density of 100 A/mm2 and 200 A/mm2 and 100 and 500 pulses for each current density value. Corrosion tests, X-ray diffraction, microhardness and residual stresses were collected before and after the electropulsing treatments. Tensile tests were performed after the electropulsing treatments in order to compare the mechanical response to reference tensile tests performed before pulsing treatments. Increase in fracture strain was observed after pulsing treatment in comparison to the reference tensile tests. A decrease in microhardness was also observed after electropulsing treatments for both degrees of prestrain. Electropulsing treatment almost eliminates the work-hardened state in the 5% prestrained specimens while partially recovered the 15% prestrained material increasing both uniform and fracture strain. Bulk temperature of the samples remained the same for all treatments duration. The effect are to be addressed to a combined effect of increase in atomic flux due to the electrical current and local joule heating in correspondence of crystal defects. Electropulsing treatment applied to metallic alloys is a promising technique to reduce the work hardening state without the need of annealing treatments in a dedicated furnace
Microstructural and Corrosion Properties of PEO Coated Zinc-Aluminized (ZA) Steel
Plasma Electrolytic Oxidation (PEO) is a surface treatment, similar to anodizing, that produces thick oxide films on the surface of metals. In the present work, PEO coatings were obtained on zinc-aluminized (ZA) carbon steel using a solution containing sodium silicate and potassium hydroxide as electrolyte, and working with high current densities and short treatment times in Direct Current (DC) mode. The thickness of the coating, as well as the surface morphology, were strongly influenced by the process parameters, with different dissolution grades of the ZA layer depending on the current density and treatment time. A compromise between thickness and porosity of the coating was found with low current density/long treatment time or high current density/short treatment time. The PEO layer was mainly composed of aluminum oxides and silicon compounds. The corrosion resistance increased remarkably in the samples with the PEO coating. These PEO coated samples are suitable for sealing treatments that further increase their corrosion properties or will be also an ideal substrate for commercial painting, assuring improved mechanical adhesion and protection even in the presence of damages
Microstructural and Corrosion Properties of Cold Rolled Laser Welded UNS S32750 Duplex Stainless Steel
The main goal of this work was to study the effect of plastic deformation on weldability of duplex stainless steel (DSS). It is well known that plastic deformation prior to thermal cycles can enhance secondary phase precipitation in DSS which can lead to significant change of the ferrite-austenite phase ratio. From this point of view one of the most important phase transformation in DSS is the eutectoid decomposition of ferrite. Duplex stainless steels (DSSs) are a category of stainless steels which are employed in all kinds of applications where high strength and excellent corrosion resistance are both required. This favorable combination of properties is provided by their biphasic microstructure, consisting of ferrite and austenite in approximately equal volume fractions. Nevertheless, these materials may suffer from several microstructural transformations if they undergo heat treatments, welding processes or thermal cycles. These transformations modify the balanced phase ratio, compromising the corrosion and mechanical properties of the material. In this paper, the microstructural stability as a consequence of heat history due to welding processes has been investigated for a super duplex stainless steel (SDSS) UNS S32750. During this work, the effects of laser beam welding on cold rolled UNS S32750 SDSS have been investigated. Samples have been cold rolled at different thickness reduction (ε = 9.6%, 21.1%, 29.6%, 39.4%, 49.5%, and 60.3%) and then welded using Nd:YAG laser. Optical and electronical microscopy, eddy’s current tests, microhardness tests, and critical pitting temperature tests have been performed on the welded samples to analyze the microstructure, ferrite content, hardness, and corrosion resistance. Results show that laser welded joints had a strongly unbalanced microstructure, mostly consisting of ferritic phase (~60%). Ferrite content decreases with increasing distance from the middle of the joint. The heat-affected zone (HAZ) was almost undetectable and no defects or secondary phases have been observed. Both hardness and corrosion susceptibility of the joints increase. Plastic deformation had no effects on microstructure, hardness or corrosion resistance of the joints, but resulted in higher hardness of the base material. Cold rolling process instead, influences the corrosion resistance of the base material
Solid state hydrogen storage in alanates and alanate-based compounds: a review
The safest way to store hydrogen is in solid form, physically entrapped in molecular form in highly porous materials, or chemically bound in atomic form in hydrides. Among the different families of these compounds, alkaline and alkaline earth metals alumino-hydrides (alanates) have been regarded as promising storing media and have been extensively studied since 1997, when Bogdanovic and Schwickardi reported that Ti-doped sodium alanate could be reversibly dehydrogenated under moderate conditions. In this review, the preparative methods; the crystal structure; the physico-chemical and hydrogen absorption-desorption properties of the alanates of Li, Na, K, Ca, Mg, Y, Eu, and Sr; and of some of the most interesting multi-cation alanates will be summarized and discussed. The most promising alanate-based reactive hydride composite (RHC) systems developed in the last few years will also be described and commented on concerning their hydrogen absorption and desorption performanc
Tetrahydroborates: development and potential as hydrogen storage medium
The use of fossil fuels as an energy supply becomes increasingly problematic from the point of view of both environmental emissions and energy sustainability. As an alternative, hydrogen is widely regarded as a key element for a potential energy solution. However, different from fossil fuels such as oil, gas, and coal, the production of hydrogen requires energy. Alternative and intermittent renewable sources such as solar power, wind power, etc., present multiple advantages for the production of hydrogen. On one hand, the renewable sources contribute to a remarkable reduction of pollutants released to the air. On the other hand, they significantly enhance the sustainability of energy supply. In addition, the storage of energy in form of hydrogen has a huge potential to balance an effective and synergetic utilization of the renewable energy sources. In this regard, hydrogen storage technology presents a key roadblock towards the practical application of hydrogen as “energy carrier”. Among the methods available to store hydrogen, solid-state storage is the most attractive alternative both from the safety and the volumetric energy density points of view. Because of their appealing hydrogen content, complex hydrides and complex hydride-based systems have attracted considerable attention as potential energy vectors for mobile and stationary applications. In this review, the progresses made over the last century on the development in the synthesis and research on the decomposition reactions of homoleptic tetrahydroborates is summarized. Furthermore, theoretical and experimental investigations on the thermodynamic and kinetic tuning of tetrahydroborates for hydrogen storage purposes are herein reviewed.CONICET (Consejo Nacional de Invetigaciones Científicas y Técnicas),
ANPCyT—(Agencia Nacional de Promoción Científica y Tecnológica) and CNEA (Comisión Nacional de Energía
Atómica). The authors also acknowledge Alexander von Humboldt Foundation (J. Puszkiel fellowship holder,
No. 1187279 STP
CO2 reactivity with Mg2NiH4 synthesized by: In situ monitoring of mechanical milling
CO2 capture and conversion are a key research field for the transition towards an economy only based on renewable energy sources. In this regard, hydride materials are a potential option for CO2 methanation since they can provide hydrogen and act as a catalytic species. In this work, Mg2NiH4 complex hydride is synthesized by in situ monitoring of mechanical milling under a hydrogen atmosphere from a 2MgH2:Ni stoichiometric mixture. Temperature and pressure evolution is monitored, and the material is characterized, during milling in situ, thus providing a good insight into the synthesis process. The cubic polymorph of Mg2NiH4 (S.G. Fm3m) starts to be formed in the early beginning of the mechanical treatment due to the mechanical stress induced by the milling process. Then, after 25 hours of milling, Mg2NiH4 with a monoclinic (S.G. C12/c1) structure appears. The formation of the monoclinic polymorph is most likely related to the stress release that follows the continuous refinement of the material's microstructure. At the end of the milling process, after 60 hours, the as-milled material is composed of 90.8 wt% cubic Mg2NiH4, 5.7 wt% monoclinic Mg2NiH4, and 3.5 wt% remnant Ni. The as-milled Mg2NiH4 shows high reactivity for CO2 conversion into CH4. Under static conditions at 400 °C for 5 hours, the interactions between as-milled Mg2NiH4 and CO2 result in total CO2 consumption and in the formation of the catalytic system Ni-MgNi2-Mg2Ni/MgO. Experimental evidence and thermodynamic equilibrium calculations suggest that the global methanation mechanism takes place through the adsorption of C and the direct solid gasification towards CH4 formation.Fil: Grasso, María Laura. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia de Investigación Aplicada CAB. Departamento Fisicoquímica de Materiales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Puszkiel, Julián Atilio. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia de Investigación Aplicada CAB. Departamento Fisicoquímica de Materiales; Argentina. Helmholtz-Zentrum Geesthacht GmbH; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Gennari, Fabiana Cristina. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia de Investigación Aplicada CAB. Departamento Fisicoquímica de Materiales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Santoru, Antonio. Helmholtz-Zentrum Geesthacht GmbH; AlemaniaFil: Dornheim, Martin. Helmholtz-Zentrum Geesthacht GmbH; AlemaniaFil: Pistidda, Claudio. Helmholtz-Zentrum Geesthacht GmbH; Alemani
- …