11 research outputs found

    Level Two String Functions and Rogers Ramanujan Type Identities

    Get PDF
    The level two string functions are calculated exactly for all simply laced Lie algebras, using a ladder coset construction. These are the characters of cosets of the type G/U(1)rG/U(1)^r, where GG is the algebra at level two and rr is its rank. This coset is a theory of generalized parafermions. A conjectured Rogers Ramanujan type identity is described for these characters. Using the exact string functions, we verify the Rogers Ramanujan type expressions, that are the main focus of this work.Comment: 26 page

    Determination of the resistivity anisotropy of SrRuO3_{3} by measuring the planar Hall effect

    Full text link
    We have measured the planar Hall effect in epitaxial thin films of the itinerant ferromagnet SrRuO3 patterned with their current paths at different angles relative to the crystallographic axes. Based on the results, we have determined that SrRuO3 exhibits small resistivity anisotropy in the entire temperature range of our measurements (between 2 to 300 K); namely, both above and below its Curie temperature (~150 K). It means that in addition to anisotropy related to magnetism, the resistivity anisotropy of SrRuO3 has an intrinsic, nonmagnetic source. We have found that the two sources of anisotropy have competing effects

    Paramagnetic anisotropic magnetoresistance in thin films of SrRuO3

    Full text link
    SrRuO3 is an itinerant ferromagnet and in its thin film form when grown on miscut SrTiO3 it has Tc of ~ 150 K and strong uniaxial anisotropy. We measured both the Hall effect and the magnetoresistance (MR) of the films as a function of the angle between the applied field and the normal to the films at temperatures above Tc. We extracted the extraordinary Hall effect that is proportional to the perpendicular component of the magnetization and thus the MR for each angle of the applied field could be correlated with the magnitude and orientation of the induced magnetization. We successfully fit the MR data with a second order magnetization expansion, which indicates large anisotropic MR in the paramagnetic state. The extremum values of resistivity are not obtained for currents parallel or perpendicular to the magnetization, probably due to the crystal symmetry.Comment: 3 pages, 3 figure
    corecore