93 research outputs found

    Genome-wide promoter extraction and analysis in human, mouse, and rat

    Get PDF
    Large-scale and high-throughput genomics research needs reliable and comprehensive genome-wide promoter annotation resources. We have conducted a systematic investigation on how to improve mammalian promoter prediction by incorporating both transcript and conservation information. This enabled us to build a better multispecies promoter annotation pipeline and hence to create CSHLmpd (Cold Spring Harbor Laboratory Mammalian Promoter Database) for the biomedical research community, which can act as a starting reference system for more refined functional annotations

    Observed deep energetic eddies by seamount wake

    Get PDF
    Despite numerous surface eddies are observed in the ocean, deep eddies (a type of eddies which have no footprints at the sea surface) are much less reported in the literature due to the scarcity of their observation. In this letter, from recently collected current and temperature data by mooring arrays, a deep energetic and baroclinic eddy is detected in the northwestern South China Sea (SCS) with its intensity, size, polarity and structure being characterized. It remarkably deepens isotherm at deep layers by the amplitude of ~120 m and induces a maximal velocity amplitude about 0.18 m/s, which is far larger than the median velocity (0.02 m/s). The deep eddy is generated in a wake when a steering flow in the upper layer passes a seamount, induced by a surface cyclonic eddy. More observations suggest that the deep eddy should not be an episode in the area. Deep eddies significantly increase the velocity intensity and enhance the mixing in the deep ocean, also have potential implication for deep-sea sediments transport

    Surface warming-induced global acceleration of upper ocean currents

    Get PDF
    Β© The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Peng, Q., Xie, S.-P., Wang, D., Huang, R. X., Chen, G., Shu, Y., Shi, J.-R., & Liu, W. Surface warming-induced global acceleration of upper ocean currents. Science Advances, 8(16), (2022): eabj8394, https://doi.org/10.1126/sciadv.abj8394.How the ocean circulation changes in a warming climate is an important but poorly understood problem. Using a global ocean model, we decompose the problem into distinct responses to changes in sea surface temperature, salinity, and wind. Our results show that the surface warming effect, a robust feature of anthropogenic climate change, dominates and accelerates the upper ocean currents in 77% of the global ocean. Specifically, the increased vertical stratification intensifies the upper subtropical gyres and equatorial currents by shoaling these systems, while the differential warming between the Southern Ocean upwelling zone and the region to the north accelerates surface zonal currents in the Southern Ocean. In comparison, the wind stress and surface salinity changes affect regional current systems. Our study points a way forward for investigating ocean circulation change and evaluating the uncertainty.Q.P. is supported by the National Natural Science Foundation of China (42005035), the Science and Technology Planning Project of Guangzhou (202102020935), and the Independent Research Project Program of State Key Laboratory of Tropical Oceanography (LTOZZ2102). D.W. is supported by the National Natural Science Foundation of China (92158204), and the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (311020004). S.-P.X. is supported by the National Science Foundation (AGS-1934392). Y.S. is supported by the National Key Research and Development Program of China (2016YFC1401702). G.C. is supported by National Natural Science Foundation of China (41822602). The numerical simulation is supported by the High-Performance Computing Division and HPC managers of W. Zhou and D. Sui in the South China Sea Institute of Oceanology

    Multilevel Nitrogen Additions Alter Chemical Composition and Turnover of the Labile Fraction Soil Organic Matter via Effects on Vegetation and Microorganisms

    Full text link
    Global nitrogen (N) deposition greatly impacts soil carbon sequestration. A 2- yr multiple N addition (0, 10, 20, 40, 80, and 160 kg N·ha- 1·yr- 1) experiment was conducted in alpine grassland to illustrate the mechanisms underlying the observed soil organic matter (SOM) dynamics on the Qinghai- Tibet Plateau (QTP). Labile fraction SOM (LF- SOM) fingerprints were characterized by pyrolysis- gas chromatography/tandem- mass spectrometry, and microbial functional genes (GeoChip 4.6) were analyzed in conjunction with LF- SOM fingerprints to decipher the responses of LF- SOM transformation to N additions. The significant correlations between LF- SOM and microbial biomass, between organic compounds in LF- SOM and compound degradation- related genes, and between LF- SOM and net ecosystem exchange implied LF- SOM were the main fraction utilized by microorganisms and the most sensitive fraction to N additions. The LF- SOM increased at the lowest N addition levels (10 and 20 kg N·ha- 1·yr- 1) and decreased at higher N addition levels (40 to 160 kg N·ha- 1·yr- 1), but the decrease of LF- SOM was weakened at 160 kg N·ha- 1·yr- 1 addition. The nonlinear response of LF- SOM to N additions was due to the mass balance between plant inputs and microbial degradation. Plant- derived compounds in LF- SOM were more sensitive to N addition than microbial- derived and aromatic compounds. It is predicted that when the N deposition rate increased by 10 kg N·ha- 1·yr- 1 on the QTP, carbon sequestration in the labile fraction may increase by nearly 170% compared with that under the current N deposition rate. These findings provide insight into future N deposition impacts on LF- SOM preservation on the QTP.Key PointsThe LF- SOM quantity increased at the lowest N additions (N10 and N20) and decreased from N40 to N160, but the decrease was weakened at the highest N addition (N160)Plant- derived compounds in LF- SOM were more sensitive to N addition than microbial- derived and aromatic compoundsThe organic compounds in LF- SOM were significantly correlated with compound degradation- related genesPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154963/1/jgrg21637_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154963/2/jgrg21637.pd

    Proteomic Basis of the Antibody Response to Monkeypox Virus Infection Examined in Cynomolgus Macaques and a Comparison to Human Smallpox Vaccination

    Get PDF
    Monkeypox is a zoonotic viral disease that occurs primarily in Central and West Africa. A recent outbreak in the United States heightened public health concerns for susceptible human populations. Vaccinating with vaccinia virus to prevent smallpox is also effective for monkeypox due to a high degree of sequence conservation. Yet, the identity of antigens within the monkeypox virus proteome contributing to immune responses has not been described in detail. We compared antibody responses to monkeypox virus infection and human smallpox vaccination by using a protein microarray covering 92–95% (166–192 proteins) of representative proteomes from monkeypox viral clades of Central and West Africa, including 92% coverage (250 proteins) of the vaccinia virus proteome as a reference orthopox vaccine. All viral gene clones were verified by sequencing and purified recombinant proteins were used to construct the microarray. Serum IgG of cynomolgus macaques that recovered from monkeypox recognized at least 23 separate proteins within the orthopox proteome, while only 14 of these proteins were recognized by IgG from vaccinated humans. There were 12 of 14 antigens detected by sera of human vaccinees that were also recognized by IgG from convalescent macaques. The greatest level of IgG binding for macaques occurred with the structural proteins F13L and A33R, and the membrane scaffold protein D13L. Significant IgM responses directed towards A44R, F13L and A33R of monkeypox virus were detected before onset of clinical symptoms in macaques. Thus, antibodies from vaccination recognized a small number of proteins shared with pathogenic virus strains, while recovery from infection also involved humoral responses to antigens uniquely recognized within the monkeypox virus proteome

    Enhanced Platelet-activating Factor synthesis facilitates acute and delayed effects of ethanol intoxicated thermal burn injury

    Get PDF
    Thermal burn injuries in patients alcohol intoxicated result in greater morbidity and mortality. Murine models combining ethanol and localized thermal burn injury reproduce the systemic toxicity seen in human subjects, which consists of both acute systemic cytokine production with multiple organ dysfunction, as well as a delayed systemic immunosuppression. However, the exact mechanisms for these acute and delayed effects are unclear. These studies sought to define the role of the lipid mediator Platelet-activating factor (PAF) in the acute and delayed effects of intoxicated burn injury. Combining ethanol and thermal burn injury resulted in increased enzymatic PAF generation in a keratinocyte cell line in vitro, human skin explants ex vivo, as well as in murine skin in vivo. Further, the acute increase in inflammatory cytokines such as IL-6, and the systemic immunosuppressive effects of intoxicated thermal burn injury, were suppressed in mice lacking PAF receptors. Together, these studies provide a potential mechanism and novel treatment strategies for the augmented toxicity and immunosuppressive effects of thermal burn injury in the setting of acute ethanol exposure, which involves the pleotropic lipid mediator PAF

    Understanding Lignin-Degrading Reactions of Ligninolytic Enzymes: Binding Affinity and Interactional Profile

    Get PDF
    Previous works have demonstrated that ligninolytic enzymes mediated effective degradation of lignin wastes. The degrading ability greatly relied on the interactions of ligninolytic enzymes with lignin. Ligninolytic enzymes mainly contain laccase (Lac), lignin peroxidase (LiP) and manganese peroxidase (MnP). In the present study, the binding modes of lignin to Lac, LiP and MnP were systematically determined, respectively. Robustness of these modes was further verified by molecular dynamics (MD) simulations. Residues GLU460, PRO346 and SER113 in Lac, residues ARG43, ALA180 and ASP183 in LiP and residues ARG42, HIS173 and ARG177 in MnP were most crucial in binding of lignin, respectively. Interactional analyses showed hydrophobic contacts were most abundant, playing an important role in the determination of substrate specificity. This information is an important contribution to the details of enzyme-catalyzed reactions in the process of lignin biodegradation, which can be used as references for designing enzyme mutants with a better lignin-degrading activity

    Identification of Synaptic Targets of Drosophila Pumilio

    Get PDF
    Drosophila Pumilio (Pum) protein is a translational regulator involved in embryonic patterning and germline development. Recent findings demonstrate that Pum also plays an important role in the nervous system, both at the neuromuscular junction (NMJ) and in long-term memory formation. In neurons, Pum appears to play a role in homeostatic control of excitability via down regulation of para, a voltage gated sodium channel, and may more generally modulate local protein synthesis in neurons via translational repression of eIF-4E. Aside from these, the biologically relevant targets of Pum in the nervous system remain largely unknown. We hypothesized that Pum might play a role in regulating the local translation underlying synapse-specific modifications during memory formation. To identify relevant translational targets, we used an informatics approach to predict Pum targets among mRNAs whose products have synaptic localization. We then used both in vitro binding and two in vivo assays to functionally confirm the fidelity of this informatics screening method. We find that Pum strongly and specifically binds to RNA sequences in the 3β€²UTR of four of the predicted target genes, demonstrating the validity of our method. We then demonstrate that one of these predicted target sequences, in the 3β€²UTR of discs large (dlg1), the Drosophila PSD95 ortholog, can functionally substitute for a canonical NRE (Nanos response element) in vivo in a heterologous functional assay. Finally, we show that the endogenous dlg1 mRNA can be regulated by Pumilio in a neuronal context, the adult mushroom bodies (MB), which is an anatomical site of memory storage

    SPWD Based IEEE 1451.2 Smart Sensor Self-Recognition Mechanism and Realization

    Get PDF
    AbstractIn order to improve the self-recognition capability of the IEEE 1451 smart sensor and enhance the level of sensor's intelligence and application flexibility, this paper presents a SPWD (sorting pulse width difference) based IEEE 1451.2 smart sensor self-recognition mechanism. The mechanism realizes baud rate self-adaption of IEEE 1451.2 serial interface first adopting the SPWD method. It also utilizes TEDS (transducer electronic data sheet) definition and configuration technique and virtual TEDS parsing algorithm to achieve smart sensor self-recognition. Then, an IEEE 1451 smart weighing sensor system is constructed using this mechanism and its self-recognition properties are tested. The experiment results show that, when the baud rate is 28800 bit/s, SPWD based IEEE 1451.2 smart sensor's recognition rate is 99.07% and its average recognition time is 1.20s

    Asymmetry and Anisotropy of Microwave Backscatter at Low Incidence Angles

    No full text
    • …
    corecore