7,699 research outputs found

    Same-sign single dilepton productions at the LHC

    Get PDF
    We examine the same-sign single dilepton productions of i±j±(i,j=e,μ)\ell_i^{\pm}\ell_j^{\pm} (\ell_{i,j}=e,\mu) in high-energy proton-proton collisions at the Large Hadron Collider (LHC) in models with doubly charged Higgs scalars as well as heavy Majorana neutrinos. We demonstrate that these spectacular productions can be detected at the LHC for a class model in which the doubly charged Higgs scalars couple only to the right-handed charged leptons. The ranges of the possible doubly charged Higgs masses and mixings to observe the processes at the LHC are discussed.Comment: 10 pages, 5 figure

    Classification of (n+3)(n+3)-dimensional metric nn-Lie algebras

    Full text link
    In this paper, we focus on (n+3)(n+3)-dimensional metric nn-Lie algebras. To begin with, we give some properties on (n+3)(n+3)-dimensional nn-Lie algebras. Then based on the properties, we obtain the classification of (n+3)(n+3)-dimensional metric nn-Lie algebras

    Role of Interlayer Coupling on the Evolution of Band Edges in Few-Layer Phosphorene

    Full text link
    Using first-principles calculations, we have investigated the evolution of band-edges in few-layer phosphorene as a function of the number of P layers. Our results predict that monolayer phosphorene is an indirect band gap semiconductor and its valence band edge is extremely sensitive to strain. Its band gap could undergo an indirect-to-direct transition under a lattice expansion as small as 1% along zigzag direction. A semi-empirical interlayer coupling model is proposed, which can well reproduce the evolution of valence band-edges obtained by first-principles calculations. We conclude that the interlayer coupling plays a dominated role in the evolution of the band-edges via decreasing both band gap and carrier effective masses with the increase of phosphorene thickness. A scrutiny of the orbital-decomposed band structure provides a better understanding of the upward shift of valence band maximum surpassing that of conduction band minimum.Comment: 25 pages, 9 figure

    Low-lying even parity meson resonances and spin-flavor symmetry

    Get PDF
    A study is presented of the ss-wave meson-meson interactions involving members of the ρ\rho-nonet and of the π\pi-octet. The starting point is an SU(6) spin-flavor extension of the SU(3) flavor Weinberg-Tomozawa Lagrangian. SU(6) symmetry breaking terms are then included to account for the physical meson masses and decay constants, while preserving partial conservation of the axial current in the light pseudoscalar sector. Next, the TT-matrix amplitudes are obtained by solving the Bethe Salpeter equation in coupled-channel with the kernel built from the above interactions. The poles found on the first and second Riemann sheets of the amplitudes are identified with their possible Particle Data Group (PDG) counterparts. It is shown that most of the low-lying even parity PDG meson resonances, specially in the JP=0+J^P=0^+ and 1+1^+ sectors, can be classified according to multiplets of the spin-flavor symmetry group SU(6). The f0(1500)f_0(1500), f1(1420)f_1(1420) and some 0+(2++)0^+(2^{++}) resonances cannot be accommodated within this SU(6) scheme and thus they would be clear candidates to be glueballs or hybrids. Finally, we predict the existence of five exotic resonances (I3/2I \ge 3/2 and/or Y=2|Y|=2) with masses in the range 1.4--1.6 GeV, which would complete the 27127_1, 10310_3, and 10310_3^* multiplets of SU(3)\otimesSU(2).Comment: 43 pages, 2 figures, 61 tables. Improved discussion of Section II. To appear in Physical Review
    corecore