217 research outputs found

    Converging roads: the latest science from the 2017 IAS HIV Cure and Cancer Forum

    Get PDF
    Conference presented in the 2017 IAS HIV Cure and Cancer Forum took place in Paris on 22–23 July.S

    Efficacy and Safety of Fezolinetant in Moderate-to-Severe Vasomotor Symptoms Associated With Menopause: A Phase 3 RCT.

    Get PDF
    CONTEXT Vasomotor symptoms (VMS) are common, bothersome, and can persist for years before and after menopause. OBJECTIVE We aimed to assess efficacy/safety of fezolinetant for treatment of moderate-to-severe VMS associated with menopause. METHODS In this double-blind, placebo-controlled, 12-week (W) phase 3 trial with a 40W active treatment extension (NCT04003142; SKYLIGHT 2) women aged 40-65 years with minimum average 7 moderate-to-severe VMS/day were randomized to 12 weeks' once-daily placebo, fezolinetant 30 mg, or fezolinetant 45 mg. Completers were rerandomized to fezolinetant 30/45 mg for 40 additional weeks. Coprimary efficacy endpoints were mean daily change from baseline to W4 and W12 in VMS frequency and severity. Safety was also assessed. RESULTS Both fezolinetant doses statistically significantly reduced VMS frequency/severity at W4 and W12 vs placebo. For VMS frequency, W4 least squares mean (SE) reduction vs placebo: fezolinetant 30 mg, -1.82 (0.46; P < .001); 45 mg, -2.55 (0.46; P < .001); W12: 30 mg, -1.86 (0.55; P < .001); 45 mg, -2.53 (0.55; P < .001). For VMS severity, W4: 30 mg, -0.15 (0.06; P<.05); 45 mg, -0.29 (0.06; P < .001); W12: 30 mg, -0.16 (0.08; P <.05); 45 mg, -0.29 (0.08; P < .001). Improvement in VMS frequency and severity was observed by W1; maintained through W52. Serious TEAEs were infrequent; these were reported by 2%, 1%, and 0% of those receiving fezolinetant 30 mg, fezolinetant 45 mg, and placebo, respectively. CONCLUSIONS Daily fezolinetant 30 mg and 45 mg were efficacious and well-tolerated for treating moderate-to-severe VMS associated with menopause

    Impact of antiretroviral therapy in primary HIV infection on natural killer cell function and the association with viral rebound and HIV DNA following treatment interruption

    Get PDF
    Natural Killer (NK) cells play a key role in controlling HIV replication, with potential downstream impact on the size of the HIV reservoir and likelihood of viral rebound after antiretroviral therapy (ART) cessation. It is therefore important to understand how primary HIV infection (PHI) disrupts NK cell function, and how these functions are restored by early ART. We examined the impact of commencing ART during PHI on phenotypic and functional NK cell markers at treatment initiation (baseline), 3 months, 1 year, and 2 years in seven well-characterised participants in comparison to HIV seronegative volunteers. We then examined how those NK cell properties differentially impacted by ART related to time to viral rebound and HIV DNA levels in 44 individuals from the SPARTAC trial who stopped ART after 48 weeks treatment, started during PHI. NK cell markers that were significantly different between the seven people with HIV (PWH) treated for 2 years and HIV uninfected individuals included NKG2C levels in CD56dim NK cells, Tim-3 expression in CD56bright NK cells, IFN-Îł expressed by CD56dim NK cells after IL-12/IL-18 stimulation and the fraction of Eomes-/T-bet+ in CD56dim and CD56bright NK cells. When exploring time to viral rebound after stopping ART among the 44 SPARTAC participants, no single NK phenotypic marker correlated with control. Higher levels of IL-12/IL-18 mediated NK cell degranulation at baseline were associated with longer times to viral rebound after treatment interruption (P=0.028). Additionally, we found higher fractions of CD56dim NK cells in individuals with lower levels of HIV DNA (P=0.048). NKG2A and NKp30 levels in CD56neg NK cells were higher in patients with lower HIV DNA levels (p=0.00174, r=-0.49 and p=0.03, r= -0.327, respectively) while CD27 levels were higher in those with higher levels of HIV DNA (p=0.026). These data show NK cell functions are heterogeneously impacted by HIV infection with a mixed picture of resolution on ART, and that while NK cells may affect HIV DNA levels and time to viral rebound, no single NK cell marker defined delayed viral rebound

    UBVRI Light Curves of 44 Type Ia Supernovae

    Get PDF
    We present UBVRI photometry of 44 type-Ia supernovae (SN Ia) observed from 1997 to 2001 as part of a continuing monitoring campaign at the Fred Lawrence Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics. The data set comprises 2190 observations and is the largest homogeneously observed and reduced sample of SN Ia to date, nearly doubling the number of well-observed, nearby SN Ia with published multicolor CCD light curves. The large sample of U-band photometry is a unique addition, with important connections to SN Ia observed at high redshift. The decline rate of SN Ia U-band light curves correlates well with the decline rate in other bands, as does the U-B color at maximum light. However, the U-band peak magnitudes show an increased dispersion relative to other bands even after accounting for extinction and decline rate, amounting to an additional ~40% intrinsic scatter compared to B-band.Comment: 84 authors, 71 pages, 51 tables, 10 figures. Accepted for publication in the Astronomical Journal. Version with high-res figures and electronic data at http://astron.berkeley.edu/~saurabh/cfa2snIa

    Basic Atomic Physics

    Get PDF
    Contains reports on seven research projects.National Science Foundation (Grant PHY 87-06560)Joint Services Electronics Program (Contract DAAL03-86-K-0001)Joint Services Electronics Program (Contract DAAL03-89-C-0002)National Science Foundation (Grant PHY 86-05893)U.S. Navy - Office of Naval Research (Contract N00014-83-K-0695)U.S. Navy - Office of Naval Research (Contract N00014-89-J-1207

    Exploring movement patterns and changing distributions of baleen whales in the western North Atlantic using a decade of passive acoustic data

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Davis, G. E., Baumgartner, M. F., Corkeron, P. J., Bell, J., Berchok, C., Bonnell, J. M., Thornton, J. B., Brault, S., Buchanan, G. A., Cholewiak, D. M., Clark, C. W., Delarue, J., Hatch, L. T., Klinck, H., Kraus, S. D., Martin, B., Mellinger, D. K., Moors-Murphy, H., Nieukirk, S., Nowacek, D. P., Parks, S. E., Parry, D., Pegg, N., Read, A. J., Rice, A. N., Risch, D., Scott, A., Soldevilla, M. S., Stafford, K. M., Stanistreet, J. E., Summers, E., Todd, S., & Van Parijs, S. M. Exploring movement patterns and changing distributions of baleen whales in the western North Atlantic using a decade of passive acoustic data. Global Change Biology, (2020): 1-30, doi:10.1111/gcb.15191.Six baleen whale species are found in the temperate western North Atlantic Ocean, with limited information existing on the distribution and movement patterns for most. There is mounting evidence of distributional shifts in many species, including marine mammals, likely because of climate‐driven changes in ocean temperature and circulation. Previous acoustic studies examined the occurrence of minke (Balaenoptera acutorostrata ) and North Atlantic right whales (NARW; Eubalaena glacialis ). This study assesses the acoustic presence of humpback (Megaptera novaeangliae ), sei (B. borealis ), fin (B. physalus ), and blue whales (B. musculus ) over a decade, based on daily detections of their vocalizations. Data collected from 2004 to 2014 on 281 bottom‐mounted recorders, totaling 35,033 days, were processed using automated detection software and screened for each species' presence. A published study on NARW acoustics revealed significant changes in occurrence patterns between the periods of 2004–2010 and 2011–2014; therefore, these same time periods were examined here. All four species were present from the Southeast United States to Greenland; humpback whales were also present in the Caribbean. All species occurred throughout all regions in the winter, suggesting that baleen whales are widely distributed during these months. Each of the species showed significant changes in acoustic occurrence after 2010. Similar to NARWs, sei whales had higher acoustic occurrence in mid‐Atlantic regions after 2010. Fin, blue, and sei whales were more frequently detected in the northern latitudes of the study area after 2010. Despite this general northward shift, all four species were detected less on the Scotian Shelf area after 2010, matching documented shifts in prey availability in this region. A decade of acoustic observations have shown important distributional changes over the range of baleen whales, mirroring known climatic shifts and identifying new habitats that will require further protection from anthropogenic threats like fixed fishing gear, shipping, and noise pollution.We thank Chris Pelkie, David Wiley, Michael Thompson, Chris Tessaglia‐Hymes, Eric Matzen, Chris Tremblay, Lance Garrison, Anurag Kumar, John Hildebrand, Lynne Hodge, Russell Charif, Kathleen Dudzinski, and Ann Warde for help with project planning, field work support, and data management. For all the support and advice, thanks to the NEFSC Protected Species Branch, especially the passive acoustics group, Josh Hatch, and Leah Crowe. We thank the field and crew teams on all the ships that helped in the numerous deployments and recoveries. This research was funded and supported by many organizations, specified by projects as follows: data recordings from region 1 were provided by K. Stafford (funding: National Science Foundation #NSF‐ARC 0532611). Region 2 data: D. K. Mellinger and S. Nieukirk, National Oceanic and Atmospheric Administration (NOAA) PMEL contribution #5055 (funding: NOAA and the Office of Naval Research #N00014–03–1–0099, NOAA #NA06OAR4600100, US Navy #N00244‐08‐1‐0029, N00244‐09‐1‐0079, and N00244‐10‐1‐0047). Region 3A data: D. Risch (funding: NOAA and Navy N45 programs). Region 3 data: H. Moors‐Murphy and Fisheries and Oceans Canada (2005–2014 data), and the Whitehead Lab of Dalhousie University (eastern Scotian Shelf data; logistical support by A. Cogswell, J. Bartholette, A. Hartling, and vessel CCGS Hudson crew). Emerald Basin and Roseway Basin Guardbuoy data, deployment, and funding: Akoostix Inc. Region 3 Emerald Bank and Roseway Basin 2004 data: D. K. Mellinger and S. Nieukirk, NOAA PMEL contribution #5055 (funding: NOAA). Region 4 data: S. Parks (funding: NOAA and Cornell University) and E. Summers, S. Todd, J. Bort Thornton, A. N. Rice, and C. W. Clark (funding: Maine Department of Marine Resources, NOAA #NA09NMF4520418, and #NA10NMF4520291). Region 5 data: S. M. Van Parijs, D. Cholewiak, L. Hatch, C. W. Clark, D. Risch, and D. Wiley (funding: National Oceanic Partnership Program (NOPP), NOAA, and Navy N45). Region 6 data: S. M. Van Parijs and D. Cholewiak (funding: Navy N45 and Bureau of Ocean and Energy Management (BOEM) Atlantic Marine Assessment Program for Protected Species [AMAPPS] program). Region 7 data: A. N. Rice, H. Klinck, A. Warde, B. Martin, J. Delarue, and S. Kraus (funding: New York State Department of Environmental Conservation, Massachusetts Clean Energy Center, and BOEM). Region 8 data: G. Buchanan, and K. Dudzinski (funding: New Jersey Department of Environmental Protection and the New Jersey Clean Energy Fund) and A. N. Rice, C. W. Clark, and H. Klinck (funding: Center for Conservation Bioacoustics at Cornell University and BOEM). Region 9 data: J. E. Stanistreet, J. Bell, D. P. Nowacek, A. J. Read, and S. M. Van Parijs (funding: NOAA and US Fleet Forces Command). Region 10 data: L. Garrison, M. Soldevilla, C. W. Clark, R. A. Chariff, A. N. Rice, H. Klinck, J. Bell, D. P. Nowacek, A. J. Read, J. Hildebrand, A. Kumar, L. Hodge, and J. E. Stanistreet (funding: US Fleet Forces Command, BOEM, NOAA, and NOPP). Region 11 data: C. Berchok as part of a collaborative project led by the Fundacion Dominicana de Estudios Marinos, Inc. (Dr. Idelisa Bonnelly de Calventi; funding: The Nature Conservancy [Elianny Dominguez]) and D. Risch (funding: World Wildlife Fund, NOAA, and Dutch Ministry of Economic Affairs)

    Reductions in hypothalamic Gfap expression, glial cells and α-tanycytes in lean and hypermetabolic Gnasxl-deficient mice

    Get PDF
    BACKGROUND: Neuronal and glial differentiation in the murine hypothalamus is not complete at birth, but continues over the first two weeks postnatally. Nutritional status and Leptin deficiency can influence the maturation of neuronal projections and glial patterns, and hypothalamic gliosis occurs in mouse models of obesity. Gnasxl constitutes an alternative transcript of the genomically imprinted Gnas locus and encodes a variant of the signalling protein Gαs, termed XLαs, which is expressed in defined areas of the hypothalamus. Gnasxl-deficient mice show postnatal growth retardation and undernutrition, while surviving adults remain lean and hypermetabolic with increased sympathetic nervous system (SNS) activity. Effects of this knock-out on the hypothalamic neural network have not yet been investigated. RESULTS: RNAseq analysis for gene expression changes in hypothalami of Gnasxl-deficient mice indicated Glial fibrillary acid protein (Gfap) expression to be significantly down-regulated in adult samples. Histological analysis confirmed a reduction in Gfap-positive glial cell numbers specifically in the hypothalamus. This reduction was observed in adult tissue samples, whereas no difference was found in hypothalami of postnatal stages, indicating an adaptation in adult Gnasxl-deficient mice to their earlier growth phenotype and hypermetabolism. Especially noticeable was a loss of many Gfap-positive α-tanycytes and their processes, which form part of the ependymal layer that lines the medial and dorsal regions of the 3(rd) ventricle, while ÎČ-tanycytes along the median eminence (ME) and infundibular recesses appeared unaffected. This was accompanied by local reductions in Vimentin and Nestin expression. Hypothalamic RNA levels of glial solute transporters were unchanged, indicating a potential compensatory up-regulation in the remaining astrocytes and tanycytes. CONCLUSION: Gnasxl deficiency does not directly affect glial development in the hypothalamus, since it is expressed in neurons, and Gfap-positive astrocytes and tanycytes appear normal during early postnatal stages. The loss of Gfap-expressing cells in adult hypothalami appears to be a consequence of the postnatal undernutrition, hypoglycaemia and continued hypermetabolism and leanness of Gnasxl-deficient mice, which contrasts with gliosis observed in obese mouse models. Since α-tanycytes also function as adult neural progenitor cells, these findings might indicate further developmental abnormalities in hypothalamic formations of Gnasxl-deficient mice, potentially including neuronal composition and projections

    Polymorphisms in Toll-like receptor genes influence antibody responses to cytomegalovirus glycoprotein B vaccine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Congenital Cytomegalovirus (CMV) infection is an important medical problem that has yet no current solution. A clinical trial of CMV glycoprotein B (gB) vaccine in young women showed promising efficacy. Improved understanding of the basis for prevention of CMV infection is essential for developing improved vaccines.</p> <p>Results</p> <p>We genotyped 142 women previously vaccinated with three doses of CMV gB for single nucleotide polymorphisms (SNPs) in TLR 1-4, 6, 7, 9, and 10, and their associated intracellular signaling genes. SNPs in the platelet-derived growth factor receptor (PDGFRA) and integrins were also selected based on their role in binding gB. Specific SNPs in TLR7 and IKBKE (inhibitor of nuclear factor kappa-B kinase subunit epsilon) were associated with antibody responses to gB vaccine. Homozygous carriers of the minor allele at four SNPs in TLR7 showed higher vaccination-induced antibody responses to gB compared to heterozygotes or homozygotes for the common allele. SNP rs1953090 in IKBKE was associated with changes in antibody level from second to third dose of vaccine; homozygotes for the minor allele exhibited lower antibody responses while homozygotes for the major allele showed increased responses over time.</p> <p>Conclusions</p> <p>These data contribute to our understanding of the immunogenetic mechanisms underlying variations in the immune response to CMV vaccine.</p
    • 

    corecore