18 research outputs found

    An Efficient Strategy to Induce and Maintain In Vitro Human T Cells Specific for Autologous Non-Small Cell Lung Carcinoma

    Get PDF
    BACKGROUND: The efficient expansion in vitro of cytolytic CD8+ T cells (CTLs) specific for autologous tumors is crucial both for basic and translational aspects of tumor immunology. We investigated strategies to generate CTLs specific for autologous Non-Small Cell Lung Carcinoma (NSCLC), the most frequent tumor in mankind, using circulating lymphocytes. PRINCIPAL FINDINGS: Classic Mixed Lymphocyte Tumor Cultures with NSCLC cells consistently failed to induce tumor-specific CTLs. Cross-presentation in vitro of irradiated NSCLC cells by autologous dendritic cells, by contrast, induced specific CTL lines from which we obtained a high number of tumor-specific T cell clones (TCCs). The TCCs displayed a limited TCR diversity, suggesting an origin from few tumor-specific T cell precursors, while their TCR molecular fingerprints were detected in the patient's tumor infiltrating lymphocytes, implying a role in the spontaneous anti-tumor response. Grafting NSCLC-specific TCR into primary allogeneic T cells by lentiviral vectors expressing human V-mouse C chimeric TCRalpha/beta chains overcame the growth limits of these TCCs. The resulting, rapidly expanding CD4+ and CD8+ T cell lines stably expressed the grafted chimeric TCR and specifically recognized the original NSCLC. CONCLUSIONS: This study defines a strategy to efficiently induce and propagate in vitro T cells specific for NSCLC starting from autologous peripheral blood lymphocytes

    Atomic layer deposition of ZnInxSy buffer layers for Cu(In,Ga)Se2 solar cells

    No full text
    International audienceWe report in this paper the use of ZnInxSy films deposited by atomic layer deposition as cadmium free buffer layer in Cu(In,Ga)Se2 (CIGS) solar cells. Buffer layers with different In/(In + Zn) ratios over the whole composition range were prepared on glass substrate and characterized optically by transmission and reflection measurement and electrically by steady state photoconductivity and modulated photocurrent. CIGS solar cells were prepared with the different buffer layers and characterized. A compromise between the properties of In2S3 and ZnS was found for intermediate compositions as aimed for this study. Best efficiencies were obtained for intermediate composition (In/(In + Zn) close to 28 at. %) which also allows a higher open circuit voltage. Solar cell simulations allowed to point out the major role played by interface defect states in these devices

    Cytotoxic herpes simplex type 2-specific, DQ0602-restricted CD4(+) T-cell clones show alloreactivity to DQ0601

    No full text
    Alloreactivity is one of the most serious problems in organ transplantation. It has been hypothesized that pre-existing alloreactive T cells are actually cross-reacting cells that have been primed by the autologous major histocompatibility complex (MHC) and a specific peptide. CD8(+) cytotoxic T lymphocytes that are alloreactive and recognize a virus-peptide that is presented by the autologous MHC have been reported. Here we demonstrate a cross-reactivity that exists between DQ0602 restricted, herpes simplex type 2 VP16 40–50 specific CD4(+) T-cell clones, which can be alloreactive to DQ0601. Though most of the DQ0602 restricted T-cell clones we isolated from two different donors were not alloreactive, weakly cross-reacting T-cell clones could be isolated from both donors. Two strongly cross-reacting T-cell clones with high affinity interaction of their T-cell receptor (TCR) with both DQ0602/VP16 40–50 and DQ0601 could be isolated from one donor. DNA sequencing of the a fragment of the Vβ gene used in their TCR confirmed that these two T cells indeed are two independent clones. These clones are cytotoxic and produce cytokines of a T helper 2-like pattern. Possible implications in a DR-matched transplantation setting are discussed
    corecore