25 research outputs found

    Fine root growth and element concentrations of Norway spruce as affected by wood ash and liquid fertilisation

    Get PDF
    A field experiment to test various management practices of sustainable forestry was conducted in a Swiss spruce forest for two growing seasons. Treatments were a control (C), yearly application of 4000 kg ha−1 wood ash (A), daily irrigation with a steady state fertilisation as 'soptimal nutrition's (F) and irrigation with a water control (W). Samples were taken on a 5 × 5 m grid once a year with a soil corer to determine fine root biomass (≤ 2 mm) and soil pH of the topsoil. A subset of the fine root samples was further analysed for its nutrient composition by CN and ICP-AES analyses. The dynamics of root growth were observed with the aid of ingrowth-cores after 1, 1.5, and 2 years of treatment and the growth pattern was analysed in terms of biomass, tips, forks, length and root diameter of the samples. The A, F and also the W treatment resulted in a significant increase of soil pH in the topsoil. The fine root density increased over the two growing seasons, irrespective of the treatment. The root growth was only slightly different between the treatments with a initially faster growth under the A treatment. The W treatment reduced the number of root tips and forks, and the root length, while the A treatment increased the number of root tips, forks and the root length, but reduced the diameter. The differences between the three harvesting times (March 1999, October 1999, March 2000) of the ingrowth-cores stressed seasonal differences in root growth and the development of quasi 'ssteady state' root dynamics. The root turnover was not changed by the treatments. The elements in the fine roots were strongly affected by the treatments A and F and sometimes by W. Fine root N increased with the F treatment, while C concentrations decreased under the A, F and W treatments. The Ca and Mg concentrations were strongly enhanced by A but also by the F treatment. The K and P concentrations in the fine roots were improved by all three applications. Due to the pH increase Al, Fe and Mn concentrations in the fine roots were decreased by the A and F treatments. S and Zn concentrations showed inconsistent changes over the growing seasons. The results of this study were comparable with those of other studies in Europe and confirm the abilities of the fine roots as indicators of forest nutrition, to some extent more sensitive than the commonly used foliar analysi

    Wood ash treatment affects seasonal N fluctuations in needles of adult Picea abies trees: a 15N-tracer study

    Get PDF
    A 15N-tracer experiment was carried out in a stand of adult spruce trees [Picea abies (L.) Karst.] located on the Swiss Plateau in order to investigate the effects of wood ash treatment on seasonal nitrogen fluctuations in fine roots and needles. Treatments included irrigation (W), liquid fertilization (LF) and wood ash (A) application. 15N fluctuation in fine roots and current to 3-year-old needles was studied after one 15N pulse for 2consecutive years (1999, 2000). 15N tracer was rapidly incorporated into the fine roots of adult trees, and δ15N values reached similar levels in all treatments 2months after the pulse. In the needles, the largest increase in δ15N was observed in those of the current year. Following the initial peak during spring growth, δ15N values in needles of control trees showed an oscillating pattern through the season. This oscillation is attributed to the increased use of internal N sources, as soon as the roots can no longer meet the increased N demand during the sprouting phase. However, W-, LF- and A-treated trees no longer showed the oscillation in δ15N. Additional water (W and LF) as well as fertilizer (A and LF) may have induced shifts in the microbial flora, thus increasing the unlabelled N release from the soil. The strongest dampening was observed for the A treatment, indicating sufficient N availability from the soil, and making intensive use of the internal N sources unnecessary. Treatment with wood ash thus resulted in a similar fertilizer response to liquid fertilizatio

    Rapid 15N uptake and metabolism in fine roots of Norway spruce

    No full text
    corecore