49 research outputs found
Cobalamin-Independent Methionine Synthase (MetE): A Face-to-Face Double Barrel That Evolved by Gene Duplication
Cobalamin-independent methionine synthase (MetE) catalyzes the transfer of a methyl group from methyltetrahydrofolate to L-homocysteine (Hcy) without using an intermediate methyl carrier. Although MetE displays no detectable sequence homology with cobalamin-dependent methionine synthase (MetH), both enzymes require zinc for activation and binding of Hcy. Crystallographic analyses of MetE from T. maritima reveal an unusual dual-barrel structure in which the active site lies between the tops of the two (Ī²Ī±)(8) barrels. The fold of the N-terminal barrel confirms that it has evolved from the C-terminal polypeptide by gene duplication; comparisons of the barrels provide an intriguing example of homologous domain evolution in which binding sites are obliterated. The C-terminal barrel incorporates the zinc ion that binds and activates Hcy. The zinc-binding site in MetE is distinguished from the (Cys)(3)Zn site in the related enzymes, MetH and betaineāhomocysteine methyltransferase, by its position in the barrel and by the metal ligands, which are histidine, cysteine, glutamate, and cysteine in the resting form of MetE. Hcy associates at the face of the metal opposite glutamate, which moves away from the zinc in the binary EĀ·Hcy complex. The folate substrate is not intimately associated with the N-terminal barrel; instead, elements from both barrels contribute binding determinants in a binary complex in which the folate substrate is incorrectly oriented for methyl transfer. Atypical locations of the Hcy and folate sites in the C-terminal barrel presumably permit direct interaction of the substrates in a ternary complex. Structures of the binary substrate complexes imply that rearrangement of folate, perhaps accompanied by domain rearrangement, must occur before formation of a ternary complex that is competent for methyl transfer
Dinuclear nickel complexes modeling the structure and function of the acetyl CoA synthase active site
A dinuclear nickel complex with methyl and thiolate ligands, Ni(dadtEt)Ni(Me)(SDmp) (2), has been synthesized as a dinuclear NidāNip-site model of acetyl-CoA synthase (ACS) (dadtEt is N,Nā²-diethyl-3,7-diazanonane-1,9-dithiolate; Dmp is 2,6-dimesitylphenyl). Complex 2 was prepared via 2 methods: (i) ligand substitution of a dinuclear Ni(II)āNi(II) cation complex [Ni(dadtEt) Ni(tmtu)2] (OTf)2(1) with MeMgBr and KSDmp (tmtu is tetramethylthiourea), (ii) methyl transfer from methylcobaloxime Co(dmgBF2)2(Me)(Py) (5) to a Ni(II)āNi(0) complex such as [Ni(dadtEt)Ni(cod)] (3), generated in situ from Ni(dadtEt) and Ni(cod)2, followed by addition of KSDmp (cod is 1,5-cyclooctadiene; dmgBF2 is difluoroboryl-dimethylglyoximate). Method ii models the formation of NipāMe species proposed as a plausible intermediate in ACS catalysis. The reaction of 2 with excess CO affords the acetylthioester CH3C(O)SDmp (8) with concomitant formation of Ni(dadtEt)Ni(CO)2 (9) and Ni(CO)4 plus Ni(dadtEt). When complex 2 is treated with 1 equiv of CO in the presence of excess 1,5-cyclooctadiene, the formation of 9 and Ni(CO)4 is considerably suppressed, and instead the dinuclear Ni(II)āNi(0) complex is generated in situ, which further affords 2 upon successive treatment with Co(dmgBF2)2(Me)(Py) (5) and KSDmp. These results suggest that (i) ACS catalysis could include the Nid(II)āNip(0) state as the active species, (ii) The Nid(II)āNip(0) species could first react with methylcobalamin to afford Nid(II)āNip(II)āMe, and (iii) CO insertion into the NipāMe bond and the successive reductive elimination of acetyl-CoA occurs immediately when CoA is coordinated to the Nip site to form the active Nid(II)āNip(0) species
Insight into the mechanism of biological methanol activation based on the crystal structure of the methanol-cobalamin methyltransferase complex
Some methanogenic and acetogenic microorganisms have the catalytic capability to cleave heterolytically the C [Image: see text] O bond of methanol. To obtain insight into the elusive enzymatic mechanism of this challenging chemical reaction we have investigated the methanol-activating MtaBC complex from Methanosarcina barkeri composed of the zinc-containing MtaB and the 5-hydroxybenzimidazolylcobamide-carrying MtaC subunits. Here we report the 2.5-ā« crystal structure of this complex organized as a (MtaBC)(2) heterotetramer. MtaB folds as a TIM barrel and contains a novel zinc-binding motif. Zinc(II) lies at the bottom of a funnel formed at the C-terminal Ī²-barrel end and ligates to two cysteinyl sulfurs (Cys-220 and Cys-269) and one carboxylate oxygen (Glu-164). MtaC is structurally related to the cobalamin-binding domain of methionine synthase. Its corrinoid cofactor at the top of the Rossmann domain reaches deeply into the funnel of MtaB, defining a region between zinc(II) and the corrinoid cobalt that must be the binding site for methanol. The active site geometry supports a S(N)2 reaction mechanism, in which the C [Image: see text] O bond in methanol is activated by the strong electrophile zinc(II) and cleaved because of an attack of the supernucleophile cob(I)amide. The environment of zinc(II) is characterized by an acidic cluster that increases the charge density on the zinc(II), polarizes methanol, and disfavors deprotonation of the methanol hydroxyl group. Implications of the MtaBC structure for the second step of the reaction, in which the methyl group is transferred to coenzyme M, are discussed