12 research outputs found

    The Lunar Landing Research Vehicle; Prelude to the Arrival at Tranquility Base

    Get PDF
    The flight of Apollo 11 was the end of a decade-long race to reach the moon, a race between the US and Soviet Union, but also a race with time, for we as a nation only had the 1960s to reach our objective. Most of us remember that particular day, July 20, 1969, but the further we are from any date the harder it is to recall details. It s easy to forget, for instance, how close together the Apollo flights came to each other as the lunar flight date approached. Apollo 7 circled Earth for almost 11 days testing the systems of the spacecraft in October 1968; Apollo 8 gave us the first glimpse of our entire planet while circling the moon during Christmas of 1968. Apollo 9 lifted off on March 3 of 1969, and Apollo 10 returned to Earth on May 26 of that year. Less than two months later, on 16 July, Apollo 11 lifted off on its mission of landing on the moon. That s five Apollo launches in ten months, three of which went to the moon

    The NACA's High Speed Flight Research Station and the Development of Reaction Control Systems

    Get PDF
    This presentation and companion text describe the history of the development of Reaction Control Systems

    Fairing Well: Aerodynamic Truck Research at NASA Dryden Flight Research Center

    Get PDF
    In 1973 engineers at Dryden began investigating ways to reduce aerodynamic drag on land vehicles. They began with a delivery van whose shape they changed dramatically, finally reducing its aerodynamic drag by more than 5 percent. They then turned their attention to tracator-trailers, modifying a cab-over and reducing its aerodynamic drag by nearly 25 percent. Further research identified additional areas worth attention, but in the intervening decades few of those changes have appeared

    The NACA's High Speed Flight Research Station and the Development of Reaction Control Systems

    Get PDF
    This presentation and companion text describe the history of the development of Reaction Control Systems

    On Wings of the Minimum Induced Drag: Spanload Implications for Aircraft and Birds

    Get PDF
    For nearly a century Ludwig Prandtl's lifting-line theory remains a standard tool for understanding and analyzing aircraft wings. The tool, said Prandtl, initially points to the elliptical spanload as the most efficient wing choice, and it, too, has become the standard in aviation. Having no other model, avian researchers have used the elliptical spanload virtually since its introduction. Yet over the last half-century, research in bird flight has generated increasing data incongruous with the elliptical spanload. In 1933 Prandtl published a little-known paper presenting a superior spanload: any other solution produces greater drag. We argue that this second spanload is the correct model for bird flight data. Based on research we present a unifying theory for superior efficiency and coordinated control in a single solution. Specifically, Prandtl's second spanload offers the only solution to three aspects of bird flight: how birds are able to turn and maneuver without a vertical tail; why birds fly in formation with their wingtips overlapped; and why narrow wingtips do not result in wingtip stall. We performed research using two experimental aircraft designed in accordance with the fundamentals of Prandtl's second paper, but applying recent developments, to validate the various potentials of the new spanload, to wit: as an alternative for avian researchers, to demonstrate the concept of proverse yaw, and to offer a new method of aircraft control and efficiency

    Genesis of the Lunar Landing Vehicle

    No full text
    The author examines early research regarding return flight from a Moon landing made prior to President Kennedy's 1961 challenge to put men on the Moon before the end of the decade. Organizations involved in early research include NACA, the Flight Research Center (now Dryden) Bell Aircraft Corporation. The discussion focuses on development of a flight simulator to model the Moon's reduced gravity and development of the Lunar Landing Research Vehicle

    Anhang

    No full text

    Literaturverzeichnis

    No full text
    corecore