22 research outputs found

    PLoS Genet

    Get PDF
    All-trans retinoic acid (ATRA) is instrumental to male germ cell differentiation, but its mechanism of action remains elusive. To address this question, we have analyzed the phenotypes of mice lacking, in spermatogonia, all rexinoid receptors (RXRA, RXRB and RXRG) or all ATRA receptors (RARA, RARB and RARG). We demonstrate that the combined ablation of RXRA and RXRB in spermatogonia recapitulates the set of defects observed both upon ablation of RAR in spermatogonia. We also show that ATRA activates RAR and RXR bound to a conserved regulatory region to increase expression of the SALL4A transcription factor in spermatogonia. Our results reveal that this major pluripotency gene is a target of ATRA signaling and that RAR/RXR heterodimers are the functional units driving its expression in spermatogonia. They add to the mechanisms through which ATRA promote expression of the KIT tyrosine kinase receptor to trigger a critical step in spermatogonia differentiation. Importantly, they indicate also that meiosis eventually occurs in the absence of a RAR/RXR pathway within germ cells and suggest that instructing this process is either ATRA-independent or requires an ATRA signal originating from Sertoli cells

    Transcriptional Evidence for the Role of Chronic Venlafaxine Treatment in Neurotrophic Signaling and Neuroplasticity Including also Glutatmatergic- and Insulin-Mediated Neuronal Processes.

    Get PDF
    OBJECTIVES: Venlafaxine (VLX), a serotonine-noradrenaline reuptake inhibitor, is one of the most commonly used antidepressant drugs in clinical practice for the treatment of major depressive disorder (MDD). Despite being more potent than its predecessors, similarly to them, the therapeutical effect of VLX is visible only 3-4 weeks after the beginning of treatment. Furthermore, recent papers show that antidepressants, including also VLX, enhance the motor recovery after stroke even in non depressed persons. In the present, transcriptomic-based study we looked for changes in gene expressions after a long-term VLX administration. METHODS: Osmotic minipumps were implanted subcutaneously into Dark Agouti rats providing a continuous (40 mg/kg/day) VLX delivery for three weeks. Frontal regions of the cerebral cortex were isolated and analyzed using Illumina bead arrays to detect genes showing significant chances in expression. Gene set enrichment analysis was performed to identify specific regulatory networks significantly affected by long term VLX treatment. RESULTS: Chronic VLX administration may have an effect on neurotransmitter release via the regulation of genes involved in vesicular exocytosis and receptor endocytosis (such as Kif proteins, Myo5a, Sv2b, Syn2 or Synj2). Simultaneously, VLX activated the expression of genes involved in neurotrophic signaling (Ntrk2, Ntrk3), glutamatergic transmission (Gria3, Grin2b and Grin2a), neuroplasticity (Camk2g/b, Cd47), synaptogenesis (Epha5a, Gad2) and cognitive processes (Clstn2). Interestingly, VLX increased the expression of genes involved in mitochondrial antioxidant activity (Bcl2 and Prdx1). Additionally, VLX administration also modulated genes related to insulin signaling pathway (Negr1, Ppp3r1, Slc2a4 and Enpp1), a mechanism that has recently been linked to neuroprotection, learning and memory. CONCLUSIONS: Our results strongly suggest that chronic VLX treatment improves functional reorganization and brain plasticity by influencing gene expression in regulatory networks of motor cortical areas. These results are consonant with the synaptic (network) hypothesis of depression and antidepressant-induced motor recovery after stroke

    Expression of the endocannabinoid system and response to cannabinoid components by the human fetal testis

    Get PDF
    International audienceBackground - Cannabis consumption by pregnant women continues to increase worldwide, raising concerns aboutadverse effects on fetal growth and deleterious impacts on the newborn, in connection with evidence of placentaltransfer of cannabis compound. Cannabis action is mediated by the endocannabinoid system (ECS), which expression is well established in the brain but unknown in the developing testis. The fetal testis, whose endocrine function orchestrates the masculinization of many distant organs, is particularly sensitive to disruption by xenobiotics. In this context, we aimed to determine whether cannabis exposure has the potential to directly impact the human fetal testis.Methods - We determined the expression of components of the ECS in the human fetal testis from 6 to 17 developmental weeks and assessed the direct effects of phytocannabinoids Δ9‑trans‑tetrahydrocannabinol (THC) and cannabidiol (CBD) on the testis morphology and cell functions ex vivo.Results - We demonstrate the presence in the human fetal testis of two key endocannabinoids, 2‑arachidonylglycerol (2‑AG) and to a lower level anandamide (AEA), as well as a range of enzymes and receptors for the ECS. Ex vivo exposure of first trimester testes to CBD, THC, or CBD/THC [ratio 1:1] at 10−7 to 10−5 M altered testosterone secretion by Leydig cells, AMH secretion by Sertoli cells, and impacted testicular cell proliferation and viability as early as 72 h post‑exposure. Transcriptomic analysis on 72 h‑exposed fetal testis explants revealed 187 differentially expressed genes (DEGs), including genes involved in steroid synthesis and toxic substance response. Depending on the molecules and testis age, highly deleterious effects of phytocannabinoid exposure were observed on testis tissue after 14 days, including Sertoli and germ cell death.Conclusions - Our study is the first to evidence the presence of the ECS in the human fetal testis and to highlight the potential adverse effect of cannabis consumption by pregnant women onto the development of the male gonad

    J Biol Chem

    No full text
    The plasma membrane protein STRA6 is thought to mediate uptake of retinol from its blood carrier retinol-binding protein (RBP) into cells and to function as a surface receptor that, upon binding of holo-RBP, activates a JAK/STAT cascade. It was suggested that STRA6 signaling underlies insulin resistance induced by elevated serum levels of RBP in obese animals. To investigate these activities in vivo, we generated and analyzed Stra6-null mice. We show that the contribution of STRA6 to retinol uptake by tissues in vivo is small and that, with the exception of the eye, ablation of Stra6 has only a modest effect on retinoid homeostasis and does not impair physiological functions that critically depend on retinoic acid in the embryo or in the adult. However, ablation of Stra6 effectively protects mice from RBP-induced suppression of insulin signaling. Thus one biological function of STRA6 in tissues other than the eye appears to be the coupling of circulating holo-RBP levels to cell signaling, in turn regulating key processes such as insulin response
    corecore