142 research outputs found
In-situ characterization of qubit drive-phase distortions
Reducing errors in quantum gates is critical to the development of quantum
computers. To do so, any distortions in the control signals should be
identified, however, conventional tools are not always applicable when part of
the system is under high vacuum, cryogenic, or microscopic. Here, we
demonstrate a method to detect and compensate for amplitude-dependent phase
changes, using the qubit itself as a probe. The technique is implemented using
a microwave-driven trapped ion qubit, where correcting phase distortions leads
to a three-fold improvement in single-qubit gate error, to attain
state-of-the-art performance benchmarked at error per
Clifford gate
Focusing of quantum gate interactions using dynamical decoupling
In 1995, Cirac and Zoller proposed the first concrete implementation of a
small-scale quantum computer, using laser beams focused to micron spot sizes to
address individual trapped ions in a linear crystal. Here we propose a method
to focus entangling gate interactions, but driven by microwave fields, to
micron-sized zones, corresponding to microwave wavelengths. We
demonstrate the ability to suppress the spin-dependent force using a single
ion, and find the required interaction introduces error
per emulated gate in a single-qubit benchmarking sequence. We model the scheme
for a 17-qubit ion crystal, and find that any pair of ions should be
addressable with an average crosstalk error of
Consumo de Savia por Melanerpes cactorum y su Rol en la Estructuración de Ensambles de Aves en Bosques Secos
The White-fronted Woodpecker (Melanerpes cactorum) drills holes in branches and trunks to feed on sap flows, providing an energy-rich food resource for other birds. Here we describe ecological and behavioral traits of the White-fronted Woodpecker related to its sap-feeding habits in the semiarid Chaco of Argentina and explore the structure of the avian assemblage in relation to the sap resource. Sap consumption by the White-fronted Woodpecker and other sap-feeding species was strongly seasonal and positively associated with periods of resource scarcity. The White-fronted Woodpecker actively defended the sap wells from smaller birds. Specialist and facultative nectarivores that assimilate sucrose at a high rate represented an important proportion of sap-feeding birds. In this system of woodpecker, sap, and other sap-feeding species, each species’ consumption depends on its physiological and behavioral characteristics as well as on the availability of other food in the surrounding environment.Melanerpes cactorum perfora ramas y troncos de árboles y arbustos para consumir la savia que fluye de las perforaciones, posibilitando a otras especies de aves el acceso a un recurso de alto contenido energé- tico. En este estudio describimos rasgos de la historia natural de M. cactorum relacionados con su alimentación en el Chaco semiárido de Argentina e investigamos la estructuración de ensambles de aves en torno al recurso savia. Para M. cactorum y las especies de aves que consumieron savia, el consumo de savia fue marcadamente estacional, posiblemente asociado a periodos de escasez de recursos. Melanerpes cactorum defendió activamente las perforaciones ante algunas especies de aves cuya masa corporal fue menor a la de los carpinteros. Las especies nectarÃvoras especialistas y facultativas con alta tasa de asimilación de sacarosa representaron una importante proporción de las aves que consumieron savia. En el sistema carpinteros–savia–aves consumidoras de savia, el consumo de este recurso depende de caracterÃsticas fisiológicas y comportamentales de las especies, como asà también de la disponibilidad de otros recursos alimenticios en los ambientes que habitan.Fil: Nuñez Montellano, Maria Gabriela. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Instituto de EcologÃa Regional; Argentina. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Tucumán; ArgentinaFil: Blendinger, Pedro Gerardo. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Instituto de EcologÃa Regional; Argentina. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Tucumán; ArgentinaFil: Macchi, Leandro. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Instituto de EcologÃa Regional; Argentina. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Tucumán; Argentin
Signaling in Secret: Pay-for-Performance and the Incentive and Sorting Effects of Pay Secrecy
Key Findings: Pay secrecy adversely impacts individual task performance because it weakens the perception that an increase in performance will be accompanied by increase in pay; Pay secrecy is associated with a decrease in employee performance and retention in pay-for-performance systems, which measure performance using relative (i.e., peer-ranked) criteria rather than an absolute scale (see Figure 2 on page 5); High performing employees tend to be most sensitive to negative pay-for- performance perceptions; There are many signals embedded within HR policies and practices, which can influence employees’ perception of workplace uncertainty/inequity and impact their performance and turnover intentions; and When pay transparency is impractical, organizations may benefit from introducing partial pay openness to mitigate these effects on employee performance and retention
Operating a full tungsten actively cooled tokamak: overview of WEST first phase of operation
WEST is an MA class superconducting, actively cooled, full tungsten (W) tokamak, designed to operate in long pulses up to 1000 s. In support of ITER operation and DEMO conceptual activities, key missions of WEST are: (i) qualification of high heat flux plasma-facing components in integrating both technological and physics aspects in relevant heat and particle exhaust conditions, particularly for the tungsten monoblocks foreseen in ITER divertor; (ii) integrated steady-state operation at high confinement, with a focus on power exhaust issues. During the phase 1 of operation (2017–2020), a set of actively cooled ITER-grade plasma facing unit prototypes was integrated into the inertially cooled W coated startup lower divertor. Up to 8.8 MW of RF power has been coupled to the plasma and divertor heat flux of up to 6 MW m−2 were reached. Long pulse operation was started, using the upper actively cooled divertor, with a discharge of about 1 min achieved. This paper gives an overview of the results achieved in phase 1. Perspectives for phase 2, operating with the full capability of the device with the complete ITER-grade actively cooled lower divertor, are also described
Transcriptional Evidence for the Role of Chronic Venlafaxine Treatment in Neurotrophic Signaling and Neuroplasticity Including also Glutatmatergic- and Insulin-Mediated Neuronal Processes.
OBJECTIVES: Venlafaxine (VLX), a serotonine-noradrenaline reuptake inhibitor, is one of the most commonly used antidepressant drugs in clinical practice for the treatment of major depressive disorder (MDD). Despite being more potent than its predecessors, similarly to them, the therapeutical effect of VLX is visible only 3-4 weeks after the beginning of treatment. Furthermore, recent papers show that antidepressants, including also VLX, enhance the motor recovery after stroke even in non depressed persons. In the present, transcriptomic-based study we looked for changes in gene expressions after a long-term VLX administration. METHODS: Osmotic minipumps were implanted subcutaneously into Dark Agouti rats providing a continuous (40 mg/kg/day) VLX delivery for three weeks. Frontal regions of the cerebral cortex were isolated and analyzed using Illumina bead arrays to detect genes showing significant chances in expression. Gene set enrichment analysis was performed to identify specific regulatory networks significantly affected by long term VLX treatment. RESULTS: Chronic VLX administration may have an effect on neurotransmitter release via the regulation of genes involved in vesicular exocytosis and receptor endocytosis (such as Kif proteins, Myo5a, Sv2b, Syn2 or Synj2). Simultaneously, VLX activated the expression of genes involved in neurotrophic signaling (Ntrk2, Ntrk3), glutamatergic transmission (Gria3, Grin2b and Grin2a), neuroplasticity (Camk2g/b, Cd47), synaptogenesis (Epha5a, Gad2) and cognitive processes (Clstn2). Interestingly, VLX increased the expression of genes involved in mitochondrial antioxidant activity (Bcl2 and Prdx1). Additionally, VLX administration also modulated genes related to insulin signaling pathway (Negr1, Ppp3r1, Slc2a4 and Enpp1), a mechanism that has recently been linked to neuroprotection, learning and memory. CONCLUSIONS: Our results strongly suggest that chronic VLX treatment improves functional reorganization and brain plasticity by influencing gene expression in regulatory networks of motor cortical areas. These results are consonant with the synaptic (network) hypothesis of depression and antidepressant-induced motor recovery after stroke
Structural Basis for Type VI Secretion Effector Recognition by a Cognate Immunity Protein
The type VI secretion system (T6SS) has emerged as an important mediator of interbacterial interactions. A T6SS from Pseudomonas aeruginosa targets at least three effector proteins, type VI secretion exported 1–3 (Tse1–3), to recipient Gram-negative cells. The Tse2 protein is a cytoplasmic effector that acts as a potent inhibitor of target cell proliferation, thus providing a pronounced fitness advantage for P. aeruginosa donor cells. P. aeruginosa utilizes a dedicated immunity protein, type VI secretion immunity 2 (Tsi2), to protect against endogenous and intercellularly-transferred Tse2. Here we show that Tse2 delivered by the T6SS efficiently induces quiescence, not death, within recipient cells. We demonstrate that despite direct interaction of Tsi2 and Tse2 in the cytoplasm, Tsi2 is dispensable for targeting the toxin to the secretory apparatus. To gain insights into the molecular basis of Tse2 immunity, we solved the 1.00 Å X-ray crystal structure of Tsi2. The structure shows that Tsi2 assembles as a dimer that does not resemble previously characterized immunity or antitoxin proteins. A genetic screen for Tsi2 mutants deficient in Tse2 interaction revealed an acidic patch distal to the Tsi2 homodimer interface that mediates toxin interaction and immunity. Consistent with this finding, we observed that destabilization of the Tsi2 dimer does not impact Tse2 interaction. The molecular insights into Tsi2 structure and function garnered from this study shed light on the mechanisms of T6 effector secretion, and indicate that the Tse2–Tsi2 effector–immunity pair has features distinguishing it from previously characterized toxin–immunity and toxin–antitoxin systems
- …