56 research outputs found

    Plant DNA Repair and Agrobacterium Tāˆ’DNA Integration

    Get PDF
    Agrobacterium species transfer DNA (Tāˆ’DNA) to plant cells where it may integrate into plant chromosomes. The process of integration is thought to involve invasion and ligation of T-DNA, or its copying, into nicks or breaks in the host genome. Integrated Tāˆ’DNA often contains, at its junctions with plant DNA, deletions of Tāˆ’DNA or plant DNA, filler DNA, and/or microhomology between T-DNA and plant DNA pre-integration sites. Tāˆ’DNA integration is also often associated with major plant genome rearrangements, including inversions and translocations. These characteristics are similar to those often found after repair of DNA breaks, and thus DNA repair mechanisms have frequently been invoked to explain the mechanism of Tāˆ’DNA integration. However, the involvement of specific plant DNA repair proteins and Agrobacterium proteins in integration remains controversial, with numerous contradictory results reported in the literature. In this review I discuss this literature and comment on many of these studies. I conclude that either multiple known DNA repair pathways can be used for integration, or that some yet unknown pathway must exist to facilitate Tāˆ’DNA integration into the plant genome

    Traversing the Cell: Agrobacterium T-DNAā€™s Journey to the Host Genome

    Get PDF
    The genus Agrobacterium is unique in its ability to conduct interkingdom genetic exchange. Virulent Agrobacterium strains transfer single-strand forms of T-DNA (T-strands) and several Virulence effector proteins through a bacterial type IV secretion system into plant host cells. T-strands must traverse the plant wall and plasma membrane, traffic through the cytoplasm, enter the nucleus, and ultimately target host chromatin for stable integration. Because any DNA sequence placed between T-DNA ā€œbordersā€ can be transferred to plants and integrated into the plant genome, the transfer and intracellular trafficking processes must be mediated by bacterial and host proteins that form complexes with T-strands. This review summarizes current knowledge of proteins that interact with T-strands in the plant cell, and discusses several models of T-complex (T-strand and associated proteins) trafficking. A detailed understanding of how these macromolecular complexes enter the host cell and traverse the plant cytoplasm will require development of novel technologies to follow molecules from their bacterial site of synthesis into the plant cell, and how these transferred molecules interact with host proteins and sub-cellular structures within the host cytoplasm and nucleus

    Vectors for multi-color bimolecular fluorescence complementation to investigate protein-protein interactions in living plant cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The investigation of protein-protein interactions is important for characterizing protein function. Bimolecular fluorescence complementation (BiFC) has recently gained interest as a relatively easy and inexpensive method to visualize protein-protein interactions in living cells. BiFC uses "split YFP" tags on proteins to detect interactions: If the tagged proteins interact, they may bring the two split fluorophore components together such that they can fold and reconstitute fluorescence. The sites of interaction can be monitored using epifluorescence or confocal microscopy. However, "conventional" BiFC can investigate interactions only between two proteins at a time. There are instances when one may wish to offer a particular "bait" protein to several "prey" proteins simultaneously. Preferential interaction of the bait protein with one of the prey proteins, or different sites of interaction between the bait protein and multiple prey proteins, may thus be observed.</p> <p>Results</p> <p>We have constructed a series of gene expression vectors, based upon the pSAT series of vectors, to facilitate the practice of multi-color BiFC. The bait protein is tagged with the C-terminal portion of CFP (cCFP), and prey proteins are tagged with the N-terminal portions of either Venus (nVenus) or Cerulean (nCerulean). Interaction of cCFP-tagged proteins with nVenus-tagged proteins generates yellow fluorescence, whereas interaction of cCFP-tagged proteins with nCerulean-tagged proteins generates blue fluorescence. Additional expression of mCherry indicates transfected cells and sub-cellular structures. Using this system, we have determined in both tobacco BY-2 protoplasts and in onion epidermal cells that <it>Agrobacterium </it>VirE2 protein interacts with the <it>Arabidopsis </it>nuclear transport adapter protein importin Ī±-1 in the cytoplasm, whereas interaction of VirE2 with a different importin Ī± isoform, importin Ī±-4, occurs predominantly in the nucleus.</p> <p>Conclusion</p> <p>Multi-color BiFC is a useful technique to determine interactions simultaneously between a given" bait" protein and multiple "prey" proteins in living plant cells. The vectors we have constructed and tested will facilitate the study of protein-protein interactions in many different plant systems.</p

    STATISTICAL METHODS FOR AFFYMETRIX TILING ARRAY DATA

    Get PDF
    Tiling arrays are a microarray technology currently being used for a variety of genomic and epigenomic applications, such as the mapping of transcription, DNA methylation, and histone modifications. Tiling arrays provide high-density coverage of a genome, or a genomic region, through the systematic and sequential placement of probes without regard to genome annotation. In this paper we compare the Affymetrix tiling array to the Affymetrix GeneChipĀ® 3ā€™ expression array and propose methods that address statistical and bioinformatic issues that accompany gene expression data that are generated from Affymetrix tiling arrays. Real data from the model organism Arabidopsis thaliana motivate this work and application

    An armadillo-domain protein participates in a telomerase interaction network

    Get PDF
    Key messageArabidopsis and human ARM protein interact with telomerase. Deregulated mRNA levels of DNA repair and ribosomal protein genes in an Arabidopsis arm mutant suggest non-telomeric ARM function. The human homolog ARMC6 interacts with hTRF2.AbstractTelomerase maintains telomeres and has proposed non-telomeric functions. We previously identified interaction of the C- terminal domain of Arabidopsis telomerase reverse transcriptase (AtTERT) with an armadillo/Ī²-catenin-like repeat (ARM) containing protein. Here we explore proteinā€“ protein interactions of the ARM protein, AtTERT domains, POT1a, TRF-like family and SMH family proteins, and the chromatin remodeling protein CHR19 using bimolecular fluorescence complementation (BiFC), yeast two-hybrid (Y2H) analysis, and co- immunoprecipitation. The ARM protein interacts with both the N- and C-terminal domains of AtTERT in different cellular compartments. ARM interacts with CHR19 and TRF-like I family proteins that also bind AtTERT directly or through interaction with POT1a. The putative human ARM homolog co-precipitates telomerase activity and interacts with hTRF2 protein in vitro. Analysis of Arabidopsis arm mutants shows no obvious changes in telomere length or telomerase activity, suggesting that ARM is not essential for telomere maintenance. The observed interactions with telomerase and Myb-like domain proteins (TRF-like family I) may therefore reflect possible non- telomeric functions. Transcript levels of several DNA repair and ribosomal genes are affected in arm mutants, and ARM, likely in association with other proteins, suppressed expression of XRCC3 and RPSAA promoter constructs in luciferase reporter assays. In conclusion, ARM can participate in non-telomeric functions of telomerase, and can also perform its own telomerase-independent functions

    Advancing Crop Transformation in the Era of Genome Editing

    Get PDF
    Plant transformation has enabled fundamental insights into plant biology and revolutionized commercial agriculture. Unfortunately, for most crops, transformation and regeneration remain arduous even after more than 30 years of technological advances. Genome editing provides novel opportunities to enhance crop productivity but relies on genetic transformation and plant regeneration, which are bottlenecks in the process. Here, we review the state of plant transformation and point to innovations needed to enable genome editing in crops. Plant tissue culture methods need optimization and simplification for efficiency and minimization of time in culture. Currently, specialized facilities exist for crop transformation. Single-cell and robotic techniques should be developed for high-throughput genomic screens. Plant genes involved in developmental reprogramming, wound response, and/or homologous recombination should be used to boost the recovery of transformed plants. Engineering universal Agrobacterium tumefaciens strains and recruiting other microbes, such as Ensifer or Rhizobium, could facilitate delivery of DNA and proteins into plant cells. Synthetic biology should be employed for de novo design of transformation systems. Genome editing is a potential game-changer in crop genetics when plant transformation systems are optimized

    Plant DNA Repair and Agrobacterium Tāˆ’DNA Integration

    No full text
    Agrobacterium species transfer DNA (Tāˆ’DNA) to plant cells where it may integrate into plant chromosomes. The process of integration is thought to involve invasion and ligation of T-DNA, or its copying, into nicks or breaks in the host genome. Integrated Tāˆ’DNA often contains, at its junctions with plant DNA, deletions of Tāˆ’DNA or plant DNA, filler DNA, and/or microhomology between T-DNA and plant DNA pre-integration sites. Tāˆ’DNA integration is also often associated with major plant genome rearrangements, including inversions and translocations. These characteristics are similar to those often found after repair of DNA breaks, and thus DNA repair mechanisms have frequently been invoked to explain the mechanism of Tāˆ’DNA integration. However, the involvement of specific plant DNA repair proteins and Agrobacterium proteins in integration remains controversial, with numerous contradictory results reported in the literature. In this review I discuss this literature and comment on many of these studies. I conclude that either multiple known DNA repair pathways can be used for integration, or that some yet unknown pathway must exist to facilitate Tāˆ’DNA integration into the plant genome
    • ā€¦
    corecore