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Abstract 

Tiling arrays are a microarray technology currently being used for a variety of genomic and 

epigenomic applications, such as the mapping of transcription, DNA methylation, and histone 

modifications.  Tiling arrays provide high-density coverage of a genome, or a genomic region, 

through the systematic and sequential placement of probes without regard to genome annotation.  

In this paper we compare the Affymetrix tiling array to the Affymetrix GeneChip® 3’ expression 

array and propose methods that address statistical and bioinformatic issues that accompany gene 

expression data that are generated from Affymetrix tiling arrays.  Real data from the model 

organism Arabidopsis thaliana motivate this work and application. 

Keywords:  Microarray; tiling array; differential expression; ANOVA model 

 

1. Introduction 

Microarray technology is a powerful tool for studying large genomic regions, often a whole 

genome, in a single experiment.  Different types of microarrays have been designed for a variety 

of applications and are commonly used to study gene expression.  One type of microarray, the 

tiling array, offers the opportunity to study many different biological phenomena (e.g., 

differential expression, methylation status, etc.) using the same array design.   

 

Tiling arrays are designed to cover entire genomic regions of interest (e.g., chromosomes) 

through the systematic selection of probes from one end of the region to the other.  Probe 

selection is performed without reference to the genome annotation, as probes are not chosen 

within a certain type of genomic element (e.g., genes), but rather covering the entire region.  It is 

the nature of their design that allows tiling arrays to enjoy a broad range of applicability.  For 

example, they can be used for epigenomic applications to study DNA methylation and histone 

modifications, both of which may occur anywhere in the genome.  They can also be used to 

identify transcription factor binding sites, investigate alternative splicing, and study gene 

expression (Mockler & Ecker, 2005).  An understanding of both the biological aspects of the 

particular application and the design of the technology are essential for implementation of a 

meaningful statistical analysis of tiling array data. Here, we focus on the study of gene 

expression using an oligonucleotide tiling array commercially produced by Affymetrix.   

 

The most common goal of gene expression studies is to measure the transcription level of 

annotated genes.  Specifically, gene expression levels are then compared between different 

conditions of interest (e.g., treatment vs. control) to obtain a set of genes that are differentially 

expressed.  Gene expression microarrays were developed for this purpose by selecting probes in 

regions of known genes.  While gene expression arrays have been used to study differential gene 
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expression for many years, relatively few studies have focused on differential expression using 

tiling arrays (Naouar et al., 2009; Zeller et al., 2009; Ghosh et al., 2007).  In the studies that do 

use tiling arrays to measure gene expression many focus on transcript mapping, where regions of 

transcription are identified through statistical models (e.g., Kapranov et al., 2002; Bertone et al., 

2004; Huber et al., 2006).  Tiling arrays are well-suited for this purpose since they offer dense 

genomic coverage in both annotated and un-annotated regions.  This can lead to the 

identification of novel transcripts and can improve genome annotation.   

Statistical issues inherent to data from gene expression arrays have been thoroughly investigated 

and many analysis methods (e.g., Kerr et al., 2000; Wolfinger et al., 2001; Bolstad et al., 2003;  

Irizarry et al., 2003;  Smyth, 2004) are available through statistical packages such as 

R/Bioconductor (R Development Core Team, 2009; Gentleman et al., 2004).  Therefore when 

using tiling arrays to study differential gene expression, it is important to learn from gene 

expression array methodology, while keeping design differences between microarrays and tiling 

arrays in mind.  In this work, we compare the Affymetrix tiling array to the Affymetrix 

GeneChip® 3’ expression array, a popular oligonucleotide gene expression array. 

 

Arabidopsis thaliana is the model organism for all plants.  Using Arabidopsis thaliana we 

investigate gene expression changes between a wild-type Arabidopsis (i.e., a control) and an 

over-expressing line of Arabidopsis by hybridizing the same mRNA samples to both Affymetrix 

GeneChip® Arabidopsis ATH1 Genome (3’ expression) arrays and  Affymetrix GeneChip® 

Arabidopsis Tiling 1.0R arrays.  Differential expression analysis for tiling arrays is proposed 

through an initial bioinformatic step which allows the same statistical model to be used for both 

the tiling and gene expression arrays.  A review and comparison of potential advantages and 

disadvantages of both technologies is given and differential expression results are compared.   

 

2. Technology Overview 

 

2.1 Gene Expression Review 

The Central Dogma of molecular biology describes the process by which information contained 

in deoxyribonucleic acid (DNA) is used to produce proteins, which are the fundamental unit of 

cellular function.  The Central Dogma states that DNA is transcribed to ribonucleic acid (RNA), 

and RNA is translated to protein (Crick, 1970).  Specifically, messenger RNA (mRNA) is a 

special class of RNA that is responsible for encoding proteins (Griffiths et al., 2008).  

Microarrays can be used to measure mRNA transcription levels of genes through the 

hybridization of an mRNA sample with probes that are selected from a reference genome and 

placed as targets on the array.  Thus the mRNA transcription levels measured on an array 

indicate which genes are active in making proteins.   

 

A gene is comprised of exons and introns.  Introns are regions within a gene that are removed in 

a process called RNA splicing.  The remaining exon sequences are then joined together to form 

the mature mRNA.  Sometimes variation in the splicing process results in different forms of an 

mRNA from the same gene.  This phenomenon is known as alternative splicing, and can occur 

when an exon gets removed or an intron does not get removed in the splicing process.  This 
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aside, mRNA typically arises from exons of genes (Griffiths et al., 2008).  Because mRNA is the 

genetic material that is hybridized to microarrays in a gene expression study, it is imperative that 

there exist probes on the array that correspond to the exons of genes, as this is where cross-

hybridization is expected to occur.  A detailed look at the probe selection process is essential for 

understanding which probes are relevant to the study of gene expression. 

 

2.2 Array Design:  Arabidopsis ATH1 Array vs. Tiling 1.0R Array 

Understanding the design of the Affymetrix ATH1 (3’ expression) array and the Affymetrix 

tiling array is essential for developing statistical methods that test for differential expression.  

Both arrays utilize 25 base oligonucleotide probes.  Each genomic sequence is represented by a 

probe pair which consists of a perfect match (PM) probe and a mismatch (MM) probe which 

differs only at the 13
th

 base pair (Technical Note: GeneChip® Arrays Provide Optimal 

Sensitivity and Specificity for Microarray Expression Analysis).   

 

ATH1 and other Affymetrix 3’ expression arrays are specifically designed to measure gene 

expression by selecting probes that cover exons of genes from the 3’ end of transcripts (Figure 

1A).  Each gene is typically represented by 11-20 probes (called a probe set) that are chosen for 

their optimal hybridization quality (Technical Note: Array Design for the GeneChip®Human 

Genome U133 Set).  Affymetrix provides a chip definition file (CDF) that connects probes to 

their corresponding probe sets.  Probe sets can later be matched to the genes they represent, 

noting that some probe sets represent more than one gene.  There are 22,810 probe sets 

represented by 251,078 probe pairs on the ATH1 array.  Differential expression between two 

conditions is assessed for each probe set.   

 

Testing for differential expression at each probe set results in thousands of hypotheses tests that 

are conducted simultaneously in a single experiment.  For a single test, the probability of a Type 

I error (i.e., a false positive declaring a gene is differentially expressed when it truly is not) is 

controlled by setting the significance level (α).  However, when all tests are considered together, 

the chance of at least one false positive increases with the number of independent tests being 

performed.  This is issue is known as the multiple testing problem and several procedures have 

been developed to control different variations of the Type I error rate for a set of simultaneous 

tests while also considering the power of the tests.  Dudoit et al. (2003) offer a review of 

methods developed to address the multiple testing problem in the context of microarray 

experiments and Farcomeni (2008) gives a general extensive review of the issue.   

 

Recall that tiling arrays are designed to cover an entire genomic region by systematically 

selecting probes from one end of the region to the other.  Tiling array probes are not specifically 

designed to optimize the study of gene expression, but rather to provide dense, unbiased genomic 

coverage.  The Affymetrix tiling array 1.0R for Arabidopsis covers the whole genome by placing 

probes along non-repetitive regions with an average gap of 10 base pairs between probes (Figure 

1B) (Package Insert: GeneChip® Arabidopsis Tiling 1.0R Array).  There are 3,039,991 million 

probe pairs which cover the five Arabidopsis chromosomes. 
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For tiling arrays, Affymetrix provides a binary probe mapping file (BPMAP) that identifies the 

genomic position and sequence of all probes.  Unfortunately, the file does not indicate the 

corresponding genomic annotation of probes (i.e., which probes belong to which genes).  Thus, it 

is unknown which probes correspond to genes or, specifically, which probes correspond to exons 

and introns (Figure 2A).  Without this information, testing differential expression between two 

conditions is limited to testing each of the ~3 million probes individually.  This is problematic 

since knowing whether or not an individual probe is differentially expressed does not give 

researchers the level of information they need.  Furthermore, many of the probes that are tested 

are not of primary interest, since they correspond to introns or intergenic regions.  Also, testing 

at a probe level basis increases the magnitude of the number of tests (~3 million probes vs. 

22,810 probe sets for the ATH1 array) and this greatly affects the multiple testing problem.  

Connecting probes to their genomic annotation is crucial to conducting biologically relevant tests 

for differential expression in tiling arrays. 

 

2.3 Annotation of Tiling Array 

The probes on tiling array can be mapped to their genomic annotation using data from The 

Arabidopsis Information Resource (TAIR) website. Specifically, each probe is mapped to an 

exon, intron, or intergenic region of the TAIR8 genome (The Arabidopsis Information Resource, 

2008).  A large percentage (54.6%) of probes on the tiling array correspond to introns or 

intergenic regions.  While these regions may contain useful information for studying alternative 

splicing or novel transcription, the focus of this work is to investigate differential gene 

expression in coding regions of annotated genes.  Therefore, using only the probes in exons of 

genes (45.4% of probes) as probe sets (Figure 2B), differential expression can be assessed for 

each gene.  In turn, testing exon probe sets greatly reduces the number of tests and leads to more 

biologically relevant results than probe level tests. 

 

There are 31,391 genes that are represented by probes in exons on the Arabidopsis tiling array, 

covering 95% of TAIR8 genes (Figure 3).  On average, there are 44 tiling array probes per gene.  

In comparison, the ATH1 Array has 22,810 probe sets with some of these corresponding to more 

than one gene.  A total of 23,087 genes are represented on the ATH1 array, covering 70% of 

TAIR8 genes (Figure 3). On average, there are 11 ATH1 array probes in each probe set.  There 

are 22,850 genes that are common to both arrays.     

 

2.4 Summary:  Arabidopsis ATH1 Array vs. Tiling 1.0R Array 

When using microarrays to study gene expression, it is important to keep in mind that mRNA 

transcript accumulation is typically expected to occur in exons.  While new regions of 

transcription or transcript variants will continue to be found, making use of the current genome 

annotation to obtain differential expression results for known genes is a common practical need 

for researchers.  Since both ATH1 arrays and tiling arrays can be used for this purpose, a brief 

summary of their potential advantages and disadvantages is merited. 

 

ATH1 arrays are specifically designed to study gene expression through the selection of probes 

with optimal hybridization quality/ability within exons of genes.  In contrast, tiling array probes 

are selected to provide unbiased, dense genomic coverage.  Due to this discrepancy in coverage 
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density, tiling arrays have on average 4 times more probes per gene than ATH1 arrays.  Thus, 

there is a trade-off between probe hybridization quality/ability and amount of coverage per gene 

on the two arrays. 

 

One convenient feature of ATH1 arrays is the availability of the previously mentioned CDF file 

that connects probes on the array to their corresponding probe sets.  The TAIR website provides 

additional data that links probe sets to genes in the current genome annotation version (The 

Arabidopsis Information Resource, 2008).  However, ATH1 arrays are designed by selecting 

probes in known genes available as of December 2001 in The Institute for Genome Research 

(TIGR) database (Data Sheet: GeneChip® Arabidopsis ATH1 Genome Array).  Any subsequent 

new information from more recent genome versions is not incorporated into the probe design.  

Therefore, if a new gene is discovered in the Arabidopsis genome, it will not have probes 

representing it on the ATH1 array.  Alternatively, tiling array probes are based on the sequence 

of the TIGR5 genome version which was completed in 2004 (Package Insert: GeneChip® 

Arabidopsis Tiling 1.0R Array).  Since probes are selected to cover the whole genome, it is 

possible that newly discovered genes will be represented on the array by probes that were 

previously thought to be intergenic.  However, since Affymetrix does not provide a file that 

connects probes on the tiling array to their current genomic annotation, this connection must be 

completed by using data from the TAIR website (The Arabidopsis Information Resource, 2008).  

Completion of this annotation reveals that the tiling array represents 25% more TAIR8 genes 

than does the ATH1 array.  Thus there is an additional trade-off between ease of obtaining 

annotation information and gene coverage on the two arrays. 

 

3. Differential Expression Analysis of Affymetrix Tiling Array Data 

 

3.1 Gene Level Model for Differential Expression 

If we consider a differential expression study based on annotated genes, one goal is to determine 

for each gene whether or not there is a significant difference in expression levels between 

conditions (e.g., treatment vs. control).  Whereas this is a common application of ATH1 arrays, it 

is only with the availability of genomic annotation for the tiling array that it is possible to 

conduct such gene level tests for differential expression.  Recall that the first step in conducting 

such an analysis for tiling arrays is to identify the probes that are biologically relevant.  This is 

accomplished by filtering out probes inside introns and intergenic regions, while retaining probes 

covering exons (Figure 2B).  This gives probe sets corresponding to 31,391 genes for the tiling 

array.  Because both ATH1 and tiling arrays now have data for each gene in the form of probe 

sets, the same statistical model can be applied to both array types.   

 

Drawing from methodology in the 3’ expression array literature (for a review see Craig et al., 

2003), the following differential expression analysis is conducted for both expression arrays and 

tiling arrays.  The arrays are first pre-processed by performing a background correction and 

normalization of variation across arrays.  Specifically, a robust multi-array analysis (RMA) 

background correction (Irizarry et al., 2003) and quantile normalization (Bolstad et al., 2003) are 

performed on the PM intensities, setting the distribution of all arrays to be the same.  An analysis 

of variance (ANOVA) model is employed to detect probe sets which are differentially expressed 
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between two treatment groups using the natural log of the background corrected, normalized data 

as the gene expression level.  The following ANOVA model (1) is fit for each probe set and is 

similar to the two-step approach employed by Wolfinger et al. (2001) and extended by Chu et al. 

(2002) for Affymetrix arrays: 

( ) ; 1,2; 1,..., ; 1,...,ijk i j ij ijky T P TP i j p k n                    (1) 

where ijky is the gene expression level for the thk  replicate of probe jP  under treatment iT ,   is 

the average gene expression level over all probes, treatments and replicates, T  and P are the 

treatment and probe main effects, TP is the interaction between treatment and probe, and ijk are 

independent errors which are normally distributed with mean 0 and variance 2 . 

 

To determine if there is a statistically significant difference in expression between two 

(treatment) groups, the following hypotheses, based on the treatment effect, are tested for each 

probe set: 

 

1 2: 0oH T T   vs.  1 2: 0aH T T               (2) 

 

The test statistic is: 1.. 2..
4~

2*

3

p o

Y Y
t under H

MSE

p


                      (3) 

where the mean squared error (MSE) and number of probes (p) from model (1) will differ for 

each probe set. 

 

Two approaches are employed to adjust for multiple testing.  The Holm adjustment controls the 

familywise error rate, which is the probability of making at least one false discovery among the 

probe set level tests (Holm, 1979).  Benjamini and Hochberg’s method controls the false 

discovery rate (FDR), which bounds the expected rate of false discoveries (Benjamini & 

Hochberg, 1995).  Holm’s procedure is more conservative than that of the FDR approach.   

 

3.2 Application to Arabidopsis thaliana data 

Data from an Arabidopsis thaliana study are used to demonstrate the application of tiling arrays 

for studying differential expression, as well as to compare tiling and ATH1 array results.  In this 

study, the consequences of over-expression of a myb transcription factor (MTF) gene are 

investigated.  Certain mutations to the MTF gene increase the plant’s susceptibility to 

Agrobacterium-mediated transformation (i.e., allowing the transfer of foreign DNA from 

Agrobacterium to the plant; Gelvin, 2003) in Arabidopsis thaliana.  Two different MTF mutants 

(hat3 and mtf2), a MTF over-expressing line (Myb4), and wild-type Columbia (Col-0) are 

studied.   Gene expression is measured via hybridizing samples of mRNA from the root tissue of 

the four different sample types to both Affymetrix GeneChip® Arabidopsis Tiling 1.0R Arrays 

and Affymetrix GeneChip® Arabidopsis ATH1 Genome Arrays.  The same mRNA samples are 

hybridized to both types of arrays.  Two of these sample types, Col-0 and Myb4, are examined 

here for illustration purposes.  Three biological replicates of each of the two sample types are 
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measured, yielding a total of 6 arrays of each type.  The goal is to identify differentially 

expressed genes between Col-0 and Myb4.   

 

Since the same biological samples are hybridized to both array types, variation in results should 

be due to the technological differences between the arrays or other experimental factors, such as 

RNA degradation, rather than due to biological differences in the samples.  Thus, a comparison 

of the results can help reveal similarities and differences between the two types of arrays.  The 

same ANOVA model (1) is applied to data from both array types where the treatment effect is 

the sample type (Col-0 or Myb4).  The hypotheses (2) are tested via the test statistic (3) for each 

probe set.  This will test for differential expression between Col-0 and Myb4 at each probe set. 

 

On the ATH1 array, the FDR and Holm’s procedures identified 4228 and 660 significant 

differentially expressed probe sets, respectively, at α=0.05 (Figure 4A).  On the tiling array, 2285 

and 510 probe sets showed significant differential expression using FDR and Holm’s (Figure 

4B).  Figure 4(A & B) shows the average log fold change of each probe set for both arrays, with 

probe sets that are not significant in grey, probe sets significant using the FDR procedure in blue, 

and probe sets significant with both FDR and Holm’s in red.  A positive log fold change 

indicates up-regulation (higher expression) in Col-0 than in Myb4 and a negative log fold change 

is indicative of down-regulation (lower expression) in the Col-0 sample.  Note that the probe sets 

in the ATH1 graph (Figure 4A) are not ordered since some probe sets correspond to more than 

one gene; whereas each probe set on the tiling array (Figure 4B) corresponds to one gene and can 

be ordered by the gene’s position on the chromosome.  The tiling array identified almost half as 

many differentially expressed probe sets using the FDR procedure as the ATH1 array, with the 

majority of significant probe sets demonstrating up-regulation and a loss of significant down-

regulation compared to the ATH1 results (Figure 4 A & B).  Note the presence of gaps in 

significant up-regulation accompanied by significant down-regulation in centromeric regions of 

each chromosome in the tiling array results (Figure 4B). 

 

To compare the results of differential expression in terms of genes rather than probe sets, the 

22,850 genes (Figure 3) that are present on both arrays are investigated.  Figure 5A shows a 

comparison of the number of significant differentially expressed genes found with both array 

types, using genes represented on both arrays.  While many of the same significant genes are 

identified using both array types (1046 with FDR; 199 with Holm’s), there are also many genes 

uniquely identified as significant by one of the arrays but not the other.  Finally, since some 

genes are represented on one array but not the other, it is important to note that a number of these 

genes are also found significant (Figure 5B).    

 

To compare the similarity of the two arrays in terms of hybridization intensities, the average log 

fold change for genes represented on both arrays is examined.  If both arrays are performing 

similarly at the gene level, it is expected that the average log fold change for a particular gene 

will be similar on both arrays and thus follow a 45
o
 line if plotted against each other (Figure 6).  

Results using the FDR procedure are highlighted in different colors (Figure 6).  Significant genes 

on both arrays (blue points) are clearly further from zero and tend to follow the 45
o
 line, with a 

noticeable larger number of genes in the upper right quadrant than the lower left quadrant, 
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meaning that these genes have a positive log fold change and are up-regulated in Col-0 on both 

arrays.  However, points in the upper left and lower right quadrants are genes that differ in the 

sign of their log fold change between arrays.  For example, genes in the lower right quadrant 

have a positive log fold change in the tiling array, but have a negative log fold change in the 

ATH1 array.  Observing the (orange) points in that quadrant which are genes identified as 

significant (with a negative log fold change) on the ATH1 array only, as well as several (green) 

points which are genes identified as significant (with a positive log fold change) on the tiling 

array only, can help explain why many more down-regulated genes are identified in the ATH1 

analysis than in the tiling analysis.   

 

In addition to the average log fold change, there are also two other quantities that affect the 

significance of a gene.  The number of probes (p) and mean squared error (MSE) per probe set 

also affect the test statistic (3) for differential expression.  Recall that the tiling array has an 

average of 44 probes per probe set, giving it an advantage over the ATH1 array which has an 

average of 11 probes per probe set.  However, the ATH1 array has a much smaller MSE per 

probe set on average (0.256) than the tiling array (0.884).  This comparative reduction in 

variation in the ATH1 array may be due to the ATH1 probe selection process for optimal 

hybridization quality.   

 

In summary, several genes are identified as differentially expressed using both arrays and may be 

of interest for further study.  However, even though the same biological samples are hybridized 

to both array types, there are many discrepancies in results.  Some differences are expected due 

to the design differences in the two arrays.  However, it is difficult to say which array gives more 

accurate results, since neither gives a perfect measure of gene expression.  What can be said is 

that tiling arrays typically have more error degrees of freedom while ATH1 arrays have less 

variation.   

 

4. Summary and Future Work 

Tiling arrays are a flexible type of microarray that can be used for many different applications.  

In this work, we focus on one application (differential expression analysis in annotated genes) in 

one type of tiling array (Affymetrix GeneChip® Arabidopsis Tiling 1.0R Array).  Gene level 

results are a practical need for researchers using tiling arrays to study differential expression.  To 

this end, the Affymetrix Arabidopsis tiling array is annotated to the TAIR8 genome by 

identifying whether each probe corresponds to an exon or intron within a gene or to an intergenic 

region.  This annotation enables the selection of biologically relevant probes (exons in genes) for 

gene level differential expression tests. 

 

Real data are presented where the same biological samples are hybridized to both the Affymetrix 

Arabidopsis tiling array and the ATH1 (3’ expression) array, which has been widely used to 

study differential expression in the past.   The same pre-processing techniques and ANOVA 

model are applied to data of both array types and results between two different sample types are 

compared.  While many genes are found to show significant differential expression with both 

arrays, the ATH1 array identified almost twice as many significant genes using a false discovery 

rate correction than the tiling array.  While this study alone cannot offer conclusive evidence to 
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explain the discrepancy of these results, it is important to consider a few things when deciding 

whether to use ATH1 or tiling arrays to study differential expression in Arabidopsis.   

 

ATH1 arrays are designed specifically for the purpose of studying gene expression, while tiling 

arrays have broad applications.  More work is needed to better understand the use of tiling arrays 

for studying differential expression of known genes, and, until then, many researchers may find 

ATH1 arrays more suitable for their needs.  However, using tiling arrays to study differential 

expression may be useful if the researcher is interested in studying gene(s) that are not 

represented on the ATH1 array, or if combining results with other biological phenomena (e.g., 

DNA methylation) is of interest.  Ultimately, the researcher must examine the goals of the study 

and consider these factors when deciding on which type of array to use for studying differential 

expression. 

 

Finally, once the tiling array probe sets are found by mapping probes to the TAIR8 genome, the 

statistical model presented here for gene level differential expression tests is relatively simple.  

Possible model improvements that are currently being explored include the incorporation of a 

fixed exon effect and a random array effect, as well as the implementation of a variance pooling 

method.  However, more work needs to done to investigate statistical issues present in the data.  

This said, since tiling arrays are used in many different applications, statisticians have ample 

opportunities to contribute to the modeling of tiling array data. 
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1.B.  Arabidopsis Tiling Array 

 

 

 
 

 

 

 

 

 

 

Figure 1.  A. Example of probes covering a gene on the Affymetrix Arabidopsis ATH1 (3’ expression) array.  The 

25 base pair probes only cover the exons of genes and can be overlapping.  B. Example of probes covering a 

genomic region on an Affymetrix Arabidopsis tiling array.  The 25 base pair probes cover exons, introns, and 

intergenic regions with an average gap of 10 base pairs between probes.   

 

 

 

2.A.  Tiling array without annotation 

 

 

 

 

 

 

 

 

2.B.  Tiling array without annotation 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.  A.  Without annotating the tiling array, it is known where probes are in the genome, but information 

about whether probes correspond to exons or introns within genes or to an intergenic region is not available.  B.  

Once the tiling array has been annotated, biologically relevant probes in a genomic region can be identified and used 

for differential expression analysis.  Red probes correspond to exons and are used in further analysis; whereas light 

grey probes correspond to introns and intergenic regions and are not retained in the analysis.  The set of red probes 

for this gene are considered to be a probe set. 
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Figure 3.  Proportional Venn diagram comparing the number of genes represented on the Affymetrix Arabidopsis 

Tiling and ATH1 arrays.  The area of each region is proportional to the number of genes in the set.  There are 22,850 

genes that are covered on both arrays; 8541 that are only covered on the tiling array; 237 that are only covered on 

the ATH1 array; and 1375 that are not covered on either array. 

 

 

 

4.A.  ATH1 Array Results 
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4.B. Tiling Array Results 

 
Figure 4.  A.  Mean log fold change vs. probe set number for the ATH1 array.  Note that the probe set numbers do 

not correspond to genomic order since some probe sets correspond to more than one gene.  B.  Mean log fold change 

vs. gene number for the tiling array.  The gene numbers are ordered by chromosomal position.  For both graphs, 

probe sets that are not significant are shown in grey, probe sets significant with FDR only are in blue, and probe sets 

significant with both FDR and Holm’s are in red.  The numbers in the legend correspond to the number of probe sets 

which correspond to each of those groups. 

 

 

 

5.A. 

FDR Significant Genes   Holm’s Significant Genes 

 
 

 

17,636 

275 

199 

485 

21,891 

Tiling ATH1 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2009/proceedings/9



5.B. 
Col-0 vs. Myb4 FDR Holm 

Tiling Only 317 36 

ATH1 Only 37 5 

 

Figure 5.  A.  Proportional Venn diagrams comparing the number of significant genes found by the tiling and ATH1 

arrays, using FDR and Holm’s procedures at α=0.05.  The area of each region is proportional to the number of genes 

in the set.  For the FDR results, there are 1046 genes that are identified as significant using both arrays; 922 that are 

only significant on the tiling array; 3246 that are only significant on the ATH1 array; and 17,636 that are not 

significant on either array.  The Holm’s results can be interpreted likewise with numbers enlarged for readability 

since the area outside the circles is large due to the number of genes that were not significant on either array.  B. 

Number of significant differentially expressed genes represented only on the tiling or ATH1 array. 

 

 

 

 
 

Figure 6.  Mean log fold change per gene for genes represented on both the ATH1 and tiling arrays.  FDR results 

are shown as grey (non-significant), orange (significant in ATH1 only), green (significant in tiling only), and blue 

(significant in both) points.  The 45
o
 line is for comparison purposes. 
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