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Materials and Methods 

RNA isolation and RT-qPCR analysis of pollen samples 

RNA from various Arabidopsis pollen developmental stages (Dupl'akova et al. 2016) was isolated 

using a Plant RNeasy Kit (Qiagen, www.qiagen.com) according to the manufacturer’s instructions, 

and further purified by DNase I treatment (1μl DNase I, RNase free, Ambion). The quality and 

quantity of RNA were checked by absorbance (NanoDrop 1000 Spectrophotometer) and by 

electrophoresis through a 1% (w/v) nondenaturing agarose gel in MOPS buffer (20 mM MOPS, 5 mM 

sodium acetate, 1 mM EDTA). RNA was denatured in a formaldehyde/formamide sample buffer (50% 

formamide, 2.2 M formaldehyde, 20 mM MOPS, 5 mM sodium acetate, 1 mM EDTA).  First-Strand 

cDNA was prepared using 1 μg of RNA, M-MLV Reverse Transcriptase, RNase H minus, Point 

mutant (Promega) and oligo(dT)18V. Reactions were supplemented with RNasin Plus RNase Inhibitor 

(Promega).  

Transcript levels relative to a ubiquitin reference gene (ubi-10) were analyzed using a 7300 Real-Time 

PCR System (Applied Biosystems, www.appliedbiosystems.com) or a Roche LightCycler Nano 

instrument. A 1 μl aliquot of cDNA was added to the 10 μl reaction mix; the final concentration of 

primers was 0.3 μM. Reactions were performed in triplicate; PCR cycle conditions consisted of 10 min 

of initial denaturation (95°C) followed by 45 cycles of 20 s at 95°C, 30 s at 60°C, and 1 min at 72°C. 

SYBR Green I fluorescence was monitored after each extension step. The amount of each respective 

transcript was determined for two biological replicates using the ΔΔCt method (Pfaffl 2004). 

Expression profile of genes encoding interacting proteins 

The transcriptome datasets (presented at Fig. 1d) were downloaded from the NASCArray microarray 

database through the AffyWatch service (Craigon et al. 2004; http://www.arabidopsis.info) and 

completed by the male gametophyte data originated from the co-author lab (Honys lab, IEB ASCR, 

Prague; Honys and Twell 2004) and processed as described in Duplakova et al. 2007. All 

transcriptomic data sets were normalized using freely available dChip 1.3 software (Li and Wong 

2001a; Li and Wong 2001b; http://www.softpedia.com/get/Science-CAD/dChip.shtml). The reliability 

and reproducibility of the analyses were ensured by the use of duplicates in each experiment, the 

normalization of all arrays to the median probe intensity level, and the use of normalized intensities of 

http://www.appliedbiosystems.com/
http://www.arabidopsis.info/


all arrays for calculating of model-based gene-expression values based on the Perfect Match-only 

model (Li and Wong 2001a; Li and Wong 2001b). For each sample, only probes with the detection 

call of ‘present’ and an expression value detection level of ‘well above background’ (Boolean flag, 

two- sided t-test) in both replicates were considered to be expressed. 

Phenotype of arm mutant plants  

Root length of 10-day-old seedlings, pollen viability, rosette diameter, leaf number, flowering time, 

and silique number of mutant plants was compared with soil-grown wild-type (Col-0) plants over three 

subsequent generations of homozygous arm-1 plants (examples shown on Supplemental Fig. S3). 

Preparation of constructs of human proteins  

The PCR product of armadillo repeat-containing protein 6 (ARMC6) encoding isoform 2 (Genebank 

accession NP_219483.1) was prepared with primers hARMC6.v2_Fw-EcoRI (5‘-

CCGGAATTCATGGTCTCCAAGCGCATTGC-3‘) and hARMC6_R+ SpeI (5‘-

CCGACTAGTTCATGGCGCCAGGTTGCC-3‘) using KAPA Taq Polymerase (KAPA Biosystems) 

and 35 PCR cycles of 94°C/20s, 53°C/20s,72°C/1min 20s.  The PCR product was digested with EcoRI 

and SpeI (New England Biolabs) and ligated into a pBluescript SK vector digested with these same 

enzymes. After sequencing, the insert was excised from the plasmid using EcoRI and NotI, gel-

purified, and ligated into the vector pTriEx4 (Novagene). Correct ORFs were checked by sequencing. 

For Gateway cloning (Invitrogen), the primers hARMC6.v2-Fw_pB1 (5‘-

AAAAAGCAGGCTTCATGGTCTCCAAGCGCATTGC-3‘) and hARMC6_R+pB2 (5‘-

AGAAAGCTGGGTCATGGCGCCAGGTTGCC) bearing partial attB sites were used in 35 PCR 

cycles of 94°C/20s, 56°C/20s,72°C/1min 30s. The PCR product was further amplified using an 

adaptor PCR protocol and attB1/attB2 primers (Invitrogen). The entry clone in the vector pDONRZeo 

was sequenced and used for the LR reaction with the vectors pGBKT7-DEST or pDEST17. The 

constructs TRF2/pGBKT7-DEST and TPP1/pGBKT7-DEST were created using entry clones of TRF2 

(amino acids 43-542) and TPP1 (89-544) in pDONRZeo and the destination vector pGBKT7-DEST. 

Correct reading frames of all destination clones were verified by sequencing.   

 

Protein expression in vitro, immunoprecipitation, and detection of human telomerase activity 

A construct encoding a c-myc tagged ARMC6 protein, ARMC6/ pGBKT7-DEST, was expressed in 

25 µl of a rabbit reticulocyte lysate (RRL). To reconstitute telomerase activity, the construct hTERT-

hTR in pBluescript-SK (Bachand et al. 2000) was expressed in 50ul of RRL. Samples were mixed 

together in reaction buffer (final concentration 25 mM HEPES, pH 7.5/150 mM KCl/5 mM MgCl2/0.1 

mM PMSF/2 μg.ml
-1

 leupeptin/1 μg.ml
-1

  pepstatin/1 mM DTT/0.1% Nonidet P-40), mouse anti-myc 

antibody (1:8000, Sigma) was added, and the mixture was incubated at 4°C overnight using a rotator. 

The TPP1/pGBKT7-DEST construct served as a positive control and sterile water as a negative 



control. Samples were mixed with 10 µl of magnetic beads (Dynabeads
® 

 Protein G, Life 

Technologies) preincubated in modified reaction buffer (25 mM HEPES, pH 7.5/150 mM KCl/5 mM 

MgCl2/0.1 mM PMSF/4 μg.ml
-1

 leupeptin, 2 μg.ml
-1

 pepstatin/1 mM DTT/0.2%  Nonidet P-40) and 

washed four times with the same buffer. Two µl of input and unbound fractions were collected for 

each sample and, together with bound fractions (2 µl of beads), served as templates for the TRAP 

assay (Sykorova et al. 2003). The samples were incubated in 46 µl of TRAP reaction buffer with 1 µl 

of 10 µM substrate primer TS21 (Fitzgerald et al. 1996) for 30 min at 30°C, heat denaturated, and the 

PCR step was started at 80°C by adding a mixture containing 1 µl of 10 µM reverse primer HUTPR29 

(Fulneckova et al. 2013) and 2 units of KAPA Taq Polymerase (KAPA Biosystems). TRAP products 

were separated by electrophoresis through a 12.5% native polyacrylamide gel, stained, and visualized 

with LAS3000 (Fujifilm).  

Analysis of protein-protein interactions of human ARMC6 protein by co-immunoprecipitation 

The bait construct TRF2/pGBKT7-DEST was expressed in 25 µl of a RRL, the prey constructs 

ARMC6/pTriEx4, ARMC6/pDEST17 and RAP1/pHGWA were expressed in 50 µl RRL, and 

radioactively labeled using 
35

S-Met. The immunoprecipitation procedure was the same as above. 5 µl 

of input and unbound fractions were collected for each sample and all fractions including bound 

fractions (10 µl of beads) were mixed with 2xSDS sample buffer, heated at 80°C for 10 min, and 

separated by 10% SDS-PAGE. Proteins were blotted onto a nitrocellulose membrane and analysed 

with FLA5000 (Fujifilm).  
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Figures 

Supplemental Figure S1. Protein-protein interactions. 

A. Protein blot analysis of representative protein constructs tested for interactions using the Y2H and 

BiFC assays. Constructs encoding TRFL2,-3,-6,-9,-11, CHR19, and TERT fragments (TEN, Fw3N-

NLS, RT, CTE2) fused with the GAL4 activation domain (AD, left panel), the GAL4 DNA-binding 

domain (BD, right panel) or nYFP (right panel) were expressed in the corresponding systems. AD-, 

BD- and nYFP-fusion proteins were detected by immunoblotting using mouse anti-HA, mouse anti-

myc and anti-GFP antibodies targeting the epitope tags of these proteins, respectively.  

B.  Bimolecular Fluorescence Complementation assay for interaction between the RT domain and 

ARM BiFC assay in Arabidopsis leaf protoplasts shows that the RT domain of AtTERT does not 

interact with the ARM protein. A mRFP-VirD2-NLS construct was used to indicate the nucleus. 

C.  Control BiFC reactions with the control protein GAUT10. Control BiFC assays using nYFP- and 

cYFP-GAUT10 constructs in combination with investigated proteins in tobacco BY-2 protoplasts (on 

left) and N. benthamiana leaves (on right). A mRFP-VirD2-NLS construct was used to indicate the 

nucleus in the left panels. bar = 20 μm. 

 

 

 

A 

 

 

   

B 



 

 

 

 

 

 

 

 

 

 

C 



Supplemental Figure S2. Further examples of ARM localization. The GFP-ARM protein (green) 

showed co-localization with the nuclear marker AT-HOOK-RFP (red) in N. benthamiana leaf cells. 

Agrobacterium cultures with pMDC43::ARM and pK7RWG2::AT-HOOK constructs were used for 

transient expression in N. benthamiana leaves via syringe infiltration. After 3 days incubation, 

fluorescence was observed. Bar = 20 µm.  

 



Supplemental Figure S3. Phenotype of arm mutants. (A) Viable pollen grains were observed in 

arm-1 mutants and wild-type (Col) plants using Alexander’s staining. (B) No morphological 

differences were observed between arm-1 mutant and wild-type plants; 23-day-old plants are shown as 

representatives.  

 



 

Supplemental Figure S4.  Telomere length in arm mutants. Telomere lengths in arm-1 and arm-2 

T-DNA insertion lines were determined by terminal restriction fragment (TRF) Southern blot analysis 

followed by analysis using the TeloTool software. Although telomeres in both arm-1 and arm-2 G3 

plants were slightly longer than those in wild-type (Col-0) plants, a paired Student t-test evaluated 

these changes in telomeres as not significant (the two-tailed P values equal 0.1175 and 0.0751 for arm-

1 and arm-2 , respectively). TRF signal – blue rectangle, mean value – red square. 

 



 

Supplemental Figure S5. Analysis of telomerase activity in arm mutants. Telomerase activity in 7-

day-old seedlings of homozygous arm-1 and arm-2 T-DNA insertion lines was compared to wild-type 

(Col-0) plants using a telomeric repeat amplification protocol (TRAP). Both mutant and wild-type 

control lines showed positive results that are demonstrated by the ladder of amplified telomerase 

products. 50 ng of total protein was used in each sample except the negative control (NC, extraction 

buffer only). 

 



 

Supplemental Figure S6. Analysis of human ARMC6 protein interactions. (A) The ARMC6 

protein interacts with TRF2 protein in vitro. The c-myc-tagged TRF2 and radioactively labeled (*) 

ARMC6 protein construct were produced by a rabbit reticulocyte lysate (RRL) system. Using mouse 

anti-myc antibodies, the positive interaction between TRF2 and ARMC6 was demonstrated in 

immunoprecipitated fractions. Input (I), unbound (U) and bound (B) fractions were analyzed. To 

confirm weak signal from this experiment and to exclude a false positivity, the TRF2-ARMC6 

interaction was investigated using ARMC6 constructs expressed independently from two different 

vectors (pDEST17 and pTriEx4) and we observed the same positive result. On right panels the 

brightness and contrast of the same picture only was manipulated to highlight weak signals in [B] 

fractions.  Co-immunoprecipitation of radioactively labeled RAP1 protein with c-myc-tagged TRF2 

served as a positive control. The experiment was repeated twice. (B) Positive result of the TRAP 

assay demonstrates that the ARMC6/c-myc protein construct pulls-down human telomerase 

reconstituted in vitro and co-immunoprecipitates telomerase activity. Human telomerase was 

reconstituted in RRL using hTERT+hTR construct (RRL), mixed with c-myc-tagged ARMC6 protein 

and subjected to pull-down assay using anti-myc antibodies and protein G magnetic beads. Input (I), 

unbound (U) and bound fractions (B), were collected for each sample and served as templates for the 

TRAP assay. Human protein TPP1/c-myc construct served as a positive control and sterile water as a 

negative control. The experiment was performed three times. (NC), negative control, RRL lysate 

only.  



 

 

 

 

 

 

 



Table S2. Summary of protein-protein interactions observed among ARM, TERT fragments, CHR19, and Arabidopsis Myb-like domain 

containing proteins using a yeast-two-hybrid assay (Y2H), co-immunoprecipitation (co-IP), and bimolecular fluorescence complementation 

(BiFC). 

 

 

Y2H
a co-IP 

TRFL9 

BiFC 

BD/AD 

ARM 

BD/AD  

CHR19 

BD/AD  

TRP1 

BD/AD 

TRFL2 

BD/AD  

TRFL11 

BD/AD 

TRB1,2 

ARM CHR19 TRP1 TRFL

2 

TRFL 

3,6 

TRFL

9 

ARM  - / - n.e. / + + / n.e. n.e. / + - / - - / - - n.a. + + + - + 

TERT-RID1 - / ++ n.e. / + - / n.e. n.e. / - (-
b
) (+

c
) - + + (+

c
) n.a. n.a. + 

TERT-TEN - / - n.e. / - - / n.e. n.e. / - (-
b
) n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

TERT-FW3N-NLS - / - n.e. / - - / n.e. n.e. / - - / - (+
c
) n.a. n.a. n.a. (+

c
) n.a. n.a. n.a. 

TERT-RT - / - n.e. / - - / n.e. n.e. / + - / - n.a. n.a. - n.a.  n.a. + n.a. n.a. 

TERT-CTE2 + / n.e. n.e./n.e. - / n.e. n.e./n.e. - / n.e. - / n.e. n.a. (+
d
) n.a. n.a. n.a. n.a. n.a. 

POT1a - / - n.e. / - - / n.e. n.e. / - - / - n.a. + n.a. n.a. n.a. n.a. n.a. + 

CHR19 + / n.e. n.e./n.e. - / n.e. n.e./n.e. - / n.e. +/ n.e. - + n.a. n.a. - n.a. + 

 

a 
, + interaction using histidine selection, ++ interaction using both histidine and stringent adenine selection, ― no interaction observed; 

b
, negative result also 

using BiFC in (Majerska et al. 2017); 
c
, positive results also using BiFC and co-IP in  (Schrumpfova et al. 2014); 

d
, in (Lee et al. 2012); n.e., not expressed; 

n.a., not analyzed 
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