31 research outputs found

    Silicification and organic matter preservation in the Anisian Muschelkalk: Implications for the basin dynamics of the central European Muschelkalk Sea

    Get PDF
    Anisian Muschelkalk carbonates of the southern Germanic Basin containing silicified ooidal grainstone are interpreted as evidence of changing pH conditions triggered by increased bioproductivity (marine phytoplankton) and terrestrial input of plant debris during maximum flooding. Three distinct stages of calcite ooid replacement by silica were detected. Stage 1 reflects authigenic quartz development during the growth of the ooids, suggesting a change in the pH–temperature regime of the depositional environment. Stages 2 and 3 are found in silica-rich domains. The composition of silica-rich ooids shows significant Al2O3 and SrO but no FeO and MnO, indicating that late diagenetic alteration was minor. Silicified interparticle pore space is characterized by excellent preservation of marine prasinophytes; palynological slides show high abundance of terrestrial phytoclasts. The implications of our findings for basin dynamics reach from paleogeography to cyclostratigraphy and sequence stratigraphy, since changes in the seawater chemistry and sedimentary organic matter distribution reflect both the marine conditions as well as the hinterland. Basin interior changes might overprint the influence of the Tethys Ocean through the eastern and western gate areas. Stratigraphically, such changes might enhance marine flooding signals. Ongoing research needs to address the complex interaction between an intracratonic basin and an open-ocean system by comparing local and regional biotic and abiotic signals

    Numerical simulation of the flow into a circular pipe section

    Get PDF
    Computational Fluid dynamics (CFD) is the science that evolves rapidly in numerical solving of fluid motion equations to produce quantitative results and analyses of phenomena encountered in the fluid flow. When properly used, CFD is often ideal for parameterization studies or physical significance investigations of flow that would otherwise be impossible to replicate through theoretical or experimental tests. The aim of this paper is the study of the turbulent airflow and how the vortices formed in turbulent airflow are influenced by the evolution of the hydraulic characteristics of the fluid flow. Unsteady numerical simulation were performed using Reynolds Average Navier-Stokes (RANS) turbulence model adapted to conventional flow into a pipe with variable section which was implemented in the ANSYS FLUENT expert software

    Two-dimensional (2D) d-Silicates from abundant natural minerals

    Full text link
    In the last decade, the materials community has been exploring new 2D materials (graphene, metallene, TMDs, TMCs, MXene, among others) that have unique physical and chemical properties. Recently, a new family of 2D materials, the so-called 2D silicates, have been proposed. They are predicted to exhibit exciting properties (such as high catalytic activity, piezoelectricity, and 2D magnetism). In the current work, we demonstrate a generic approach to the synthesis of large-scale 2D silicates from selected minerals, such as Diopside (d). Different experimental techniques were used to confirm the existence of the 2D structures (named 2D-d-silicates). DFT simulations were also used to gain insight into the structural features and energy harvesting mechanisms (flexoelectric response generating voltage up to 10 V). The current approach is completely general and can be utilized for large-scale synthesis of 2D silicates and their derivatives, whose large-scale syntheses have been elusive

    Clinopyroxene megacrysts from Marion Island, Antarctic Ocean: evidence for a late stage shallow origin

    Get PDF
    Clinopyroxene megacrysts (up to 5 cm) from a scoria cone on Marion Island, Antarctic Ocean are zoned, with compositionally distinct low (Al + Ti) and high (Al + Ti) patches arranged haphazardly throughout crystals. Inclusions of olivine, pyrrhotite, oxides, sulphides, and rounded inclusions with euhedral micro-crystals interpreted as former melt inclusions are observed. Olivine inclusions have variable compositions, ranging from primary Ti-poor crystals to Ti-rich crystals hosting secondary haematite crystals formed by hydrogenation. The crystals contain voids that are concentrated in the middle of each crystal indicating that the initial crystal growth was skeletal. Subsequent crystallisation filled in the skeletal framework creating the patchy zoning in the crystals. The Marion Island megacrysts are not homogenous, but the combination of crustal clinopyroxene compositions, primary and hydrogenated olivine, and the mode of eruption in scoria eruptions indicates that these crystals most likely formed in a shallow magma chamber. Primary olivines crystallised from a mafic magma and secondary altered olivines were incorporated into a rapidly growing megacryst in a super-saturated, fluid-rich environment, prior to being ejected onto surface in a scoria eruption.http://link.springer.com/journal/710hj2020Geolog

    Numerical simulation of the flow into a circular pipe section

    No full text
    Computational Fluid dynamics (CFD) is the science that evolves rapidly in numerical solving of fluid motion equations to produce quantitative results and analyses of phenomena encountered in the fluid flow. When properly used, CFD is often ideal for parameterization studies or physical significance investigations of flow that would otherwise be impossible to replicate through theoretical or experimental tests. The aim of this paper is the study of the turbulent airflow and how the vortices formed in turbulent airflow are influenced by the evolution of the hydraulic characteristics of the fluid flow. Unsteady numerical simulation were performed using Reynolds Average Navier-Stokes (RANS) turbulence model adapted to conventional flow into a pipe with variable section which was implemented in the ANSYS FLUENT expert software
    corecore