143 research outputs found

    A Two-Dimensional Electron Gas as a Sensitive Detector for Time-Resolved Tunneling Measurements on Self-Assembled Quantum Dots

    Get PDF
    A two-dimensional electron gas (2DEG) situated nearby a single layer of self-assembled quantum dots (QDs) in an inverted high electron mobility transistor (HEMT) structure is used as a detector for time-resolved tunneling measurements. We demonstrate a strong influence of charged QDs on the conductance of the 2DEG which allows us to probe the tunneling dynamics between the 2DEG and the QDs time resolved. Measurements of hysteresis curves with different sweep times and real-time conductance measurements in combination with an boxcar-like evaluation method enables us to unambiguously identify the transients as tunneling events between the s- and p-electron QD states and the 2DEG and rule out defect-related transients

    Cross-Correlation Earthquake Precursors in the Hydrogeochemical and Geoacoustic Signals for the Kamchatka Peninsula

    Full text link
    We propose a new type of earthquake precursor based on the analysis of correlation dynamics between geophysical signals of different nature. The precursor is found using a two-parameter cross-correlation function introduced within the framework of flicker-noise spectroscopy, a general statistical physics approach to the analysis of time series. We consider an example of cross-correlation analysis for water salinity time series, an integral characteristic of the chemical composition of groundwater, and geoacoustic emissions recorded at the G-1 borehole on the Kamchatka peninsula in the time frame from 2001 to 2003, which is characterized by a sequence of three groups of significant seismic events. We found that cross-correlation precursors took place 27, 31, and 35 days ahead of the strongest earthquakes for each group of seismic events, respectively. At the same time, precursory anomalies in the signals themselves were observed only in the geoacoustic emissions for one group of earthquakes.Comment: 21 pages, 5 figures, 1 table; to be published in "Acta Geophysica". arXiv admin note: substantial text overlap with arXiv:1101.147

    The role of matter density uncertainties in the analysis of future neutrino factory experiments

    Full text link
    Matter density uncertainties can affect the measurements of the neutrino oscillation parameters at future neutrino factory experiments, such as the measurements of the mixing parameters Ξ13\theta_{13} and \deltacp. We compare different matter density uncertainty models and discuss the possibility to include the matter density uncertainties in a complete statistical analysis. Furthermore, we systematically study in which measurements and where in the parameter space matter density uncertainties are most relevant. We illustrate this discussion with examples that show the effects as functions of different magnitudes of the matter density uncertainties. We find that matter density uncertainties are especially relevant for large \stheta \gtrsim 10^{-3}. Within the KamLAND-allowed range, they are most relevant for the precision measurements of \stheta and \deltacp, but less relevant for ``binary'' measurements, such as for the sign of \ldm, the sensitivity to \stheta, or the sensitivity to maximal CP violation. In addition, we demonstrate that knowing the matter density along a specific baseline better than to about 1% precision means that all measurements will become almost independent of the matter density uncertainties.Comment: 21 pages, 7 figures, LaTeX. Final version to be published in Phys. Rev.

    Non-standard Hamiltonian effects on neutrino oscillations

    Full text link
    We investigate non-standard Hamiltonian effects on neutrino oscillations, which are effective additional contributions to the vacuum or matter Hamiltonian. Since these effects can enter in either flavor or mass basis, we develop an understanding of the difference between these bases representing the underlying theoretical model. In particular, the simplest of these effects are classified as ``pure'' flavor or mass effects, where the appearance of such a ``pure'' effect can be quite plausible as a leading non-standard contribution from theoretical models. Compared to earlier studies investigating particular effects, we aim for a top-down classification of a possible ``new physics'' signature at future long-baseline neutrino oscillation precision experiments. We develop a general framework for such effects with two neutrino flavors and discuss the extension to three neutrino flavors, as well as we demonstrate the challenges for a neutrino factory to distinguish the theoretical origin of these effects with a numerical example. We find how the precision measurement of neutrino oscillation parameters can be altered by non-standard effects alone (not including non-standard interactions in the creation and detection processes) and that the non-standard effects on Hamiltonian level can be distinguished from other non-standard effects (such as neutrino decoherence and decay) if we consider specific imprint of the effects on the energy spectra of several different oscillation channels at a neutrino factory.Comment: 30 pages, 6 figures, LaTeX, final version, published in Eur.Phys.J.

    Extreme events and predictability of catastrophic failure in composite materials and in the Earth

    Get PDF
    Despite all attempts to isolate and predict extreme earthquakes, these nearly always occur without obvious warning in real time: fully deterministic earthquake prediction is very much a ‘black swan’. On the other hand engineering-scale samples of rocks and other composite materials often show clear precursors to dynamic failure under controlled conditions in the laboratory, and successful evacuations have occurred before several volcanic eruptions. This may be because extreme earthquakes are not statistically special, being an emergent property of the process of dynamic rupture. Nevertheless, probabilistic forecasting of event rate above a given size, based on the tendency of earthquakes to cluster in space and time, can have significant skill compared to say random failure, even in real-time mode. We address several questions in this debate, using examples from the Earth (earthquakes, volcanoes) and the laboratory, including the following. How can we identify ‘characteristic’ events, i.e. beyond the power law, in model selection (do dragon-kings exist)? How do we discriminate quantitatively between stationary and non-stationary hazard models (is a dragon likely to come soon)? Does the system size (the size of the dragon’s domain) matter? Are there localising signals of imminent catastrophic failure we may not be able to access (is the dragon effectively invisible on approach)? We focus on the effect of sampling effects and statistical uncertainty in the identification of extreme events and their predictability, and highlight the strong influence of scaling in space and time as an outstanding issue to be addressed by quantitative studies, experimentation and models

    Posterior left atrial adipose tissue attenuation assessed by computed tomography and recurrence of atrial fibrillation after catheter ablation

    Get PDF
    BACKGROUND: Atrial fibrillation (AF) recurrence following catheter ablation remains high. Recent studies have shown a relation between epicardial adipose tissue and AF. epicardial adipose tissue secretes several proinflammatory and anti-inflammatory adipokines that directly interact with the adjacent myocardium. The aim of the current study was to evaluate whether posterior left atrial (LA) adipose tissue attenuation, as marker of inflammation, is related to AF recurrences after catheter ablation.METHODS: Consecutive patients with symptomatic AF referred for first AF catheter ablation who underwent computed tomography were included. The total epicardial adipose tissue and posterior LA adipose tissue were manually traced and adipose tissue was automatically recognized as tissue with Hounsfield units (HU) between -195 and -45. The attenuation value of the posterior LA adipose tissue was assessed, and the population was divided according to the mean HU value (-96.4 HU).RESULTS: In total, 460 patients (66% male, age 61 +/- 10 years) were included in the analysis. After a median follow-up of 18 months (interquartile range, 6-32), 168 (37%) patients had AF recurrence. Patients with higher attenuation (>=-96.4 HU) of the posterior LA adipose tissue showed higher AF recurrence rates compared with patients with lower attenuation (P=0.046). Univariate analysis showed an association between AF recurrence and higher posterior LA adipose tissue attenuation (>=-96.4 HU; P<0.05). On multivariable analysis, posterior LA adipose tissue attenuation (hazard ratio, 1.26 [95% CI, 0.90-1.76]; P=0.181) remained a promising predictor of AF recurrence following catheter ablation.CONCLUSIONS: Posterior LA adipose tissue attenuation is a promising predictor of AF recurrence in patients who undergo catheter ablation. Higher adipose tissue attenuation might signal increased local inflammation and serve as an imaging biomarker of increased risk of AF recurrence.GRAPHIC ABSTRACT: A is available for this article.Cardiovascular Aspects of Radiolog

    In Vitro Structural and Functional Evaluation of Gold Nanoparticles Conjugated Antibiotics

    Get PDF
    Bactericidal efficacy of gold nanoparticles conjugated with ampicillin, streptomycin and kanamycin were evaluated. Gold nanoparticles (Gnps) were conjugated with the antibiotics during the synthesis of nanoparticles utilizing the combined reducing property of antibiotics and sodium borohydride. The conjugation of nanoparticles was confirmed by dynamic light scattering (DLS) and electron microscopic (EM) studies. Such Gnps conjugated antibiotics showed greater bactericidal activity in standard agar well diffusion assay. The minimal inhibitory concentration (MIC) values of all the three antibiotics along with their Gnps conjugated forms were determined in three bacterial strains,Escherichia coli DH5α,Micrococcus luteusandStaphylococcus aureus. Among them, streptomycin and kanamycin showed significant reduction in MIC values in their Gnps conjugated form whereas; Gnps conjugated ampicillin showed slight decrement in the MIC value compared to its free form. On the other hand, all of them showed more heat stability in their Gnps conjugated forms. Thus, our findings indicated that Gnps conjugated antibiotics are more efficient and might have significant therapeutic implications

    Left atrial appendage size is a marker of atrial fibrillation recurrence after radiofrequency catheter ablation in patients with persistent atrial fibrillation

    Get PDF
    Introduction There are no consistently confirmed predictors of atrial fibrillation (AF) recurrence after catheter ablation. Therefore, we aimed to study whether left atrial appendage volume (LAAV) and function influence the long-term recurrence of AF after catheter ablation, depending on AF type. Methods AF patients who underwent point-by-point radiofrequency catheter ablation after cardiac computed tomography (CT) were included in this analysis. LAAV and LAA orifice area were measured by CT. Uni- and multivariable Cox proportional hazard regression models were performed to determine the predictors of AF recurrence. Results In total, 561 AF patients (61.9 +/- 10.2 years, 34.9% females) were included in the study. Recurrence of AF was detected in 40.8% of the cases (34.6% in patients with paroxysmal and 53.5% in those with persistent AF) with a median recurrence-free time of 22.7 (9.3-43.1) months. Patients with persistent AF had significantly higher body surface area-indexed LAV, LAAV, and LAA orifice area and lower LAA flow velocity, than those with paroxysmal AF. After adjustment left ventricular ejection fraction (LVEF) <50% (HR = 2.17; 95% CI = 1.38-3.43; p < .001) and LAAV (HR = 1.06; 95% CI = 1.01-1.12; p = .029) were independently associated with AF recurrence in persistent AF, while no independent predictors could be identified in paroxysmal AF. Conclusion The current study demonstrates that beyond left ventricular systolic dysfunction, LAA enlargement is associated with higher rate of AF recurrence after catheter ablation in persistent AF, but not in patients with paroxysmal AF.Cardiovascular Aspects of Radiolog

    Updated Nucleosynthesis Constraints on Unstable Relic Particles

    Get PDF
    We revisit the upper limits on the abundance of unstable massive relic particles provided by the success of Big-Bang Nucleosynthesis calculations. We use the cosmic microwave background data to constrain the baryon-to-photon ratio, and incorporate an extensively updated compilation of cross sections into a new calculation of the network of reactions induced by electromagnetic showers that create and destroy the light elements deuterium, he3, he4, li6 and li7. We derive analytic approximations that complement and check the full numerical calculations. Considerations of the abundances of he4 and li6 exclude exceptional regions of parameter space that would otherwise have been permitted by deuterium alone. We illustrate our results by applying them to massive gravitinos. If they weigh ~100 GeV, their primordial abundance should have been below about 10^{-13} of the total entropy. This would imply an upper limit on the reheating temperature of a few times 10^7 GeV, which could be a potential difficulty for some models of inflation. We discuss possible ways of evading this problem.Comment: 40 pages LaTeX, 18 eps figure
    • 

    corecore