42 research outputs found
Stability and renormalization of Yang-Mills theory with Background Field Method: a regularization independent proof
In this paper the stability and the renormalizability of Yang-Mills theory in
the Background Field Gauge are studied. By means of Ward Identities of
Background gauge invariance and Slavnov-Taylor Identities the stability of the
classical model is proved and, in a regularization independent way, its
renormalizability is verified. A prescription on how to build the counterterms
is given and the possible anomalies which may appear for Ward Identities and
for Slavnov-Taylor Identities are shown.Comment: 25 pages, Latex 2.09, no figure
Tractable non-local correlation density functionals for flat surfaces and slabs
A systematic approach for the construction of a density functional for van
der Waals interactions that also accounts for saturation effects is described,
i.e. one that is applicable at short distances. A very efficient method to
calculate the resulting expressions in the case of flat surfaces, a method
leading to an order reduction in computational complexity, is presented.
Results for the interaction of two parallel jellium slabs are shown to agree
with those of a recent RPA calculation (J.F. Dobson and J. Wang, Phys. Rev.
Lett. 82, 2123 1999). The method is easy to use; its input consists of the
electron density of the system, and we show that it can be successfully
approximated by the electron densities of the interacting fragments. Results
for the surface correlation energy of jellium compare very well with those of
other studies. The correlation-interaction energy between two parallel jellia
is calculated for all separations d, and substantial saturation effects are
predicted.Comment: 10 pages, 6 figure
Exploring skewed parton distributions with two body models on the light front II: covariant Bethe-Salpeter approach
We explore skewed parton distributions for two-body, light-front wave
functions. In order to access all kinematical regimes, we adopt a covariant
Bethe-Salpeter approach, which makes use of the underlying equation of motion
(here the Weinberg equation) and its Green's function. Such an approach allows
for the consistent treatment of the non-wave function vertex (but rules out the
case of phenomenological wave functions derived from ad hoc potentials). Our
investigation centers around checking internal consistency by demonstrating
time-reversal invariance and continuity between valence and non-valence
regimes. We derive our expressions by assuming the effective qq potential is
independent of the mass squared, and verify the sum rule in a non-relativistic
approximation in which the potential is energy independent. We consider
bare-coupling as well as interacting skewed parton distributions and develop
approximations for the Green's function which preserve the general properties
of these distributions. Lastly we apply our approach to time-like form factors
and find similar expressions for the related generalized distribution
amplitudes.Comment: 25 pages, 12 figures, revised (minor changes but essential to
consistency
Study of the Process in the C.M.Energy Range 1.05-1.38 GeV with CMD-2
The process has been studied with the CMD-2 detector
using about 950 events detected in the center-of-mass energy range from 1.05 to
1.38 GeV. The cross section exceeds the expectation based on the contributions
of the rho(770), omega(782) and phi(1020) mesons only.Comment: 12 pages, 3 figures, uses elsart.cls, submitted to Physics Letters
Environment-Induced Decoherence and the Transition From Quantum to Classical
We study dynamics of quantum open systems, paying special attention to those
aspects of their evolution which are relevant to the transition from quantum to
classical. We begin with a discussion of the conditional dynamics of simple
systems. The resulting models are straightforward but suffice to illustrate
basic physical ideas behind quantum measurements and decoherence. To discuss
decoherence and environment-induced superselection einselection in a more
general setting, we sketch perturbative as well as exact derivations of several
master equations valid for various systems. Using these equations we study
einselection employing the general strategy of the predictability sieve.
Assumptions that are usually made in the discussion of decoherence are
critically reexamined along with the ``standard lore'' to which they lead.
Restoration of quantum-classical correspondence in systems that are classically
chaotic is discussed. The dynamical second law -it is shown- can be traced to
the same phenomena that allow for the restoration of the correspondence
principle in decohering chaotic systems (where it is otherwise lost on a very
short time-scale). Quantum error correction is discussed as an example of an
anti-decoherence strategy. Implications of decoherence and einselection for the
interpretation of quantum theory are briefly pointed out.Comment: 80 pages, 7 figures included, Lectures given by both authors at the
72nd Les Houches Summer School on "Coherent Matter Waves", July-August 199
Quantum dynamics and thermalization for out-of-equilibrium phi^4-theory
The quantum time evolution of \phi^4-field theory for a spatially homogeneous
system in 2+1 space-time dimensions is investigated numerically for
out-of-equilibrium initial conditions on the basis of the Kadanoff-Baym
equations including the tadpole and sunset self-energies. Whereas the tadpole
self-energy yields a dynamical mass, the sunset self-energy is responsible for
dissipation and an equilibration of the system. In particular we address the
dynamics of the spectral (`off-shell') distributions of the excited quantum
modes and the different phases in the approach to equilibrium described by
Kubo-Martin-Schwinger relations for thermal equilibrium states. The
investigation explicitly demonstrates that the only translation invariant
solutions representing the stationary fixed points of the coupled equation of
motions are those of full thermal equilibrium. They agree with those extracted
from the time integration of the Kadanoff-Baym equations in the long time
limit. Furthermore, a detailed comparison of the full quantum dynamics to more
approximate and simple schemes like that of a standard kinetic (on-shell)
Boltzmann equation is performed. Our analysis shows that the consistent
inclusion of the dynamical spectral function has a significant impact on
relaxation phenomena. The different time scales, that are involved in the
dynamical quantum evolution towards a complete thermalized state, are discussed
in detail. We find that far off-shell 1 3 processes are responsible for
chemical equilibration, which is missed in the Boltzmann limit. Finally, we
address briefly the case of (bare) massless fields. For sufficiently large
couplings we observe the onset of Bose condensation, where our scheme
within symmetric \phi^4-theory breaks down.Comment: 77 pages, 26 figure
Effective Lagrangian Approach to the Theory of Eta Photoproduction in the Region
We investigate eta photoproduction in the resonance region
within the effective Lagrangian approach (ELA), wherein leading contributions
to the amplitude at the tree level are taken into account. These include the
nucleon Born terms and the leading -channel vector meson exchanges as the
non-resonant pieces. In addition, we consider five resonance contributions in
the - and - channel; besides the dominant , these are:
and . The amplitudes for the
and the photoproduction near threshold have significant
differences, even as they share common contributions, such as those of the
nucleon Born terms. Among these differences, the contribution to the
photoproduction of the -channel excitation of the is the most
significant. We find the off-shell properties of the spin-3/2 resonances to be
important in determining the background contributions. Fitting our effective
amplitude to the available data base allows us to extract the quantity
, characteristic of the
photoexcitation of the resonance and its decay into the
-nucleon channel, of interest to precise tests of hadron models. At the
photon point, we determine it to be from
the old data base, and from a
combination of old data base and new Bates data. We obtain the helicity
amplitude for to be from the old data base, and from the combination of the old data base and new Bates
data, compared with the results of the analysis of pion photoproduction
yielding , in the same units.Comment: 43 pages, RevTeX, 9 figures available upon request, to appear in
Phys. Rev.
Measurement of the Running of the Electromagnetic Coupling at Large Momentum-Transfer at LEP
The evolution of the electromagnetic coupling, alpha, in the
momentum-transfer range 1800GeV^2 < -Q^2 < 21600GeV^2 is studied with about
40000 Bhabha-scattering events collected with the L3 detector at LEP at
centre-of-mass energies 189-209GeV. The running of alpha is parametrised as:
alpha(Q^2) = alpha_0/(1-C Delta alpha(Q^2)), where alpha_0=\alpha(Q^2=0) is the
fine-structure constant and C=1 corresponds to the evolution expected in QED. A
fit to the differential cross section of the e+e- ->e+e- process for scattering
angles in the range |cos theta|<0.9 excludes the hypothesis of a constant value
of alpha, C=0, and validates the QED prediction with the result: C = 1.05 +/-
0.07 +/- 0.14, where the first uncertainty is statistical and the second
systematic