398 research outputs found

    Gauge/Gravity Duality and Some Applications

    Full text link
    We discuss the AdS/CFT correspondence in which space-time emerges from an interacting theory of D-branes and open strings. These ideas have a historical continuity with QCD which is an interacting theory of quarks and gluons. In particular we review the classic case of D3 branes and the non-conformal D1 brane system. We outline by some illustrative examples the calculations that are enabled in a strongly coupled gauge theory by correspondence with dynamical horizons in semi-classical gravity in one higher dimension. We also discuss implications of the gauge-fluid/gravity correspondence for the information paradox of black hole physics.Comment: 19 pages, 2 figures, Contribution to "Conference in Honor of Murray Gell-Mann's 80th Birthday

    Measured spacecraft dynamic effects on atmospheric science instruments

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77045/1/AIAA-1997-419-842.pd

    Solving the Hierarchy Problem with Noncompact Extra Dimensions

    Get PDF
    We show that gravitational effects of global cosmic 3-branes can be responsible for compactification from six to four space-time dimensions, naturally producing the observed hierarchy between electroweak and gravitational forces. The finite radius of the transverse dimensions follows from Einstein's equation, and is exponentially large compared with the scales associated with the 3-brane. The space-time ends on a mild naked singularity at the boundary of the transverse dimensions; nevertheless unitary boundary conditions render the singularity harmless.Comment: 11 pages. Several references adde

    Environment as a Witness: Selective Proliferation of Information and Emergence of Objectivity in a Quantum Universe

    Full text link
    We study the role of the information deposited in the environment of an open quantum system in course of the decoherence process. Redundant spreading of information -- the fact that some observables of the system can be independently ``read-off'' from many distinct fragments of the environment -- is investigated as the key to effective objectivity, the essential ingredient of ``classical reality''. This focus on the environment as a communication channel through which observers learn about physical systems underscores importance of quantum Darwinism -- selective proliferation of information about ``the fittest states'' chosen by the dynamics of decoherence at the expense of their superpositions -- as redundancy imposes the existence of preferred observables. We demonstrate that the only observables that can leave multiple imprints in the environment are the familiar pointer observables singled out by environment-induced superselection (einselection) for their predictability. Many independent observers monitoring the environment will therefore agree on properties of the system as they can only learn about preferred observables. In this operational sense, the selective spreading of information leads to appearance of an objective ``classical reality'' from within quantum substrate.Comment: New figures, to appear in PR

    Classical paths in systems of fermions

    Full text link
    We implement in systems of fermions the formalism of pseudoclassical paths that we recently developed for systems of bosons and show that quantum states of fermionic fields can be described, in the Heisenberg picture, as linear combinations of randomly distributed paths that do not interfere between themselves and obey classical Dirac equations. Every physical observable is assigned a time-dependent value on each path in a way that respects the anticommutative algebra between quantum operators and we observe that these values on paths do not necessarily satisfy the usual algebraic relations between classical observables. We use these pseudoclassical paths to define the dynamics of quantum fluctuations in systems of fermions and show that, as we found for systems of bosons, the dynamics of fluctuations of a wide class of observables that we call "collective" observables can be approximately described in terms of classical stochastic concepts. Finally, we apply this formalism to describe the dynamics of local fluctuations of globally conserved fermion numbers.Comment: to appear in Pys. Rev.

    Mixed Sneutrinos, Dark Matter and the LHC

    Full text link
    We study the phenomenology of supersymmetric models in which gauge-singlet scalars mix with the MSSM sneutrinos through weak-scale AA terms. After reviewing the constraints on mixed-sneutrino dark matter from measurements of ΩCDM\Omega_{CDM} and from direct-detection experiments, we explore mixed-sneutrino signatures relevant to the LHC. For a mixed-sneutrino LSP and a right-handed slepton NLSP, decays of the lightest neturalino can produce opposite-sign, same-flavor (OSSF) dileptons with an invariant-mass distribution shifted away from the kinematic endpoint. In different parameter regions, the charginos and neutralinos produced in cascades all decay dominantly to the lighter sneutrinos, leading to a kinematic edge in the jet-lepton invariant-mass distribution from the decay chain \tilde{q} \to \chi^- q \to \snu^* l q, without an OSSF dilepton signature. We explore the possibility of using mass estimation methods to distinguish this mixed-sneutrino jet-lepton signature from an MSSM one. Finally, we consider signatures associated with Higgs-lepton or ZZ-lepton production in cascades involving the heavier sneutrinos

    Identifying coherent patterns of environmental change between multiple, multivariate records: an application to four 1000-year diatom records from Victoria, Australia

    Get PDF
    Empirical orthogonal functions (EOFs) of indirect archives of environmental change are increasingly used to identify coherent trends between palaeoclimate records, to separate externally forced patterns from locally driven idiosyncrasies. Lake sediments are particularly suited to such syntheses: they are abundant in most landscapes and record a wide array of information, yet local complexities often conceal or confuse the climate signal recorded at individual sites. Lake sediment parameters usually exhibit non-linear, multivariate and indirect responses to climate, therefore identifying coherent patterns between two or more lake records presents a complex challenge. Ideally, the selection of representative variables should be non-subjective and inclusive of as many different variables as possible, allowing for unexpected correlations between sites. In order to meet such demands, we propose a two-tier ordination procedure whereby site-specific (local) ordinations, obtained using Detrended Correspondence Analysis (DCA), are nested within a second, regional EOF. Using the local DCAs as representative variables allows the retention of a larger fraction of variance from each site, removes any subjectivity from variable selection and retains the potential for observing multiple, coherent signals from within and between each dataset. We explore this potential using four decadally resolved diatom records from volcanic lakes in Western Victoria, Australia. The records span the 1000 years prior to European settlement in CE 1803. Our analyses reveal at least two coherent patterns of ecological change that are manifest in each of the four datasets, patterns which may have been overlooked by a single-variable, empirical orthogonal function approach. This intra-site coherency provides a valuable step towards understanding multi-decadal hydroclimate variability in southeastern Australia

    Masses and Mixings in a Grand Unified Toy Model

    Full text link
    The generation of the fermion mass hierarchy in the standard model of particle physics is a long-standing puzzle. The recent discoveries from neutrino physics suggests that the mixing in the lepton sector is large compared to the quark mixings. To understand this asymmetry between the quark and lepton mixings is an important aim for particle physics. In this regard, two promising approaches from the theoretical side are grand unified theories and family symmetries. In this note we try to understand certain general features of grand unified theories with Abelian family symmetries by taking the simplest SU(5) grand unified theory as a prototype. We construct an SU(5) toy model with U(1)F⊗Z2′⊗Z2′′⊗Z2′′′U(1)_F \otimes Z'_2\otimes Z''_2 \otimes Z'''_2 family symmetry that, in a natural way, duplicates the observed mass hierarchy and mixing matrices to lowest approximation. The system for generating the mass hierarchy is through a Froggatt-Nielsen type mechanism. One idea that we use in the model is that the quark and charged lepton sectors are hierarchical with small mixing angles while the light neutrino sector is democratic with larger mixing angles. We also discuss some of the difficulties in incorporating finer details into the model without making further assumptions or adding a large scalar sector.Comment: 21 pages, 2 figures, RevTeX, v2: references updated and typos corrected, v3: updated top quark mass, comments on MiniBooNE result, and typos correcte
    • …
    corecore