517 research outputs found

    On Recurrent Reachability for Continuous Linear Dynamical Systems

    Full text link
    The continuous evolution of a wide variety of systems, including continuous-time Markov chains and linear hybrid automata, can be described in terms of linear differential equations. In this paper we study the decision problem of whether the solution x(t)\boldsymbol{x}(t) of a system of linear differential equations dx/dt=Axd\boldsymbol{x}/dt=A\boldsymbol{x} reaches a target halfspace infinitely often. This recurrent reachability problem can equivalently be formulated as the following Infinite Zeros Problem: does a real-valued function f:R0Rf:\mathbb{R}_{\geq 0}\rightarrow\mathbb{R} satisfying a given linear differential equation have infinitely many zeros? Our main decidability result is that if the differential equation has order at most 77, then the Infinite Zeros Problem is decidable. On the other hand, we show that a decision procedure for the Infinite Zeros Problem at order 99 (and above) would entail a major breakthrough in Diophantine Approximation, specifically an algorithm for computing the Lagrange constants of arbitrary real algebraic numbers to arbitrary precision.Comment: Full version of paper at LICS'1

    Counterexample Guided Abstraction Refinement Algorithm for Propositional Circumscription

    Full text link
    Circumscription is a representative example of a nonmonotonic reasoning inference technique. Circumscription has often been studied for first order theories, but its propositional version has also been the subject of extensive research, having been shown equivalent to extended closed world assumption (ECWA). Moreover, entailment in propositional circumscription is a well-known example of a decision problem in the second level of the polynomial hierarchy. This paper proposes a new Boolean Satisfiability (SAT)-based algorithm for entailment in propositional circumscription that explores the relationship of propositional circumscription to minimal models. The new algorithm is inspired by ideas commonly used in SAT-based model checking, namely counterexample guided abstraction refinement. In addition, the new algorithm is refined to compute the theory closure for generalized close world assumption (GCWA). Experimental results show that the new algorithm can solve problem instances that other solutions are unable to solve

    Surface Instabilities and Magnetic Soft Matter

    Full text link
    We report on the formation of surface instabilities in a layer of thermoreversible ferrogel when exposed to a vertical magnetic field. Both static and time dependent magnetic fields are employed. Under variations of temperature, the viscoelastic properties of our soft magnetic matter can be tuned. Stress relaxation experiments unveil a stretched exponential scaling of the shear modulus, with an exponent of beta=1/3. The resulting magnetic threshold for the formation of Rosensweig-cusps is measured for different temperatures, and compared with theoretical predictions by Bohlius et. al. in J. Phys.: Condens. Matter., 2006, 18, 2671-2684.Comment: accepted to Soft Matte

    Holography, Unfolding and Higher-Spin Theory

    Full text link
    Holographic duality is argued to relate classes of models that have equivalent unfolded formulation, hence exhibiting different space-time visualizations for the same theory. This general phenomenon is illustrated by the AdS4AdS_4 higher-spin gauge theory shown to be dual to the theory of 3d conformal currents of all spins interacting with 3d conformal higher-spin fields of Chern-Simons type. Generally, the resulting 3d boundary conformal theory is nonlinear, providing an interacting version of the 3d boundary sigma model conjectured by Klebanov and Polyakov to be dual to the AdS4AdS_4 HS theory in the large NN limit. Being a gauge theory it escapes the conditions of the theorem of Maldacena and Zhiboedov, which force a 3d boundary conformal theory to be free. Two reductions of particular higher-spin gauge theories where boundary higher-spin gauge fields decouple from the currents and which have free boundary duals are identified. Higher-spin holographic duality is also discussed for the cases of AdS3/CFT2AdS_3/CFT_2 and duality between higher-spin theories and nonrelativistic quantum mechanics. In the latter case it is shown in particular that (dSdS) AdSAdS geometry in the higher-spin setup is dual to the (inverted) harmonic potential in the quantum-mechanical setup.Comment: 57 pages, V2: Acknowledgements, references, comments, clarifications and new section on reductions of particular HS theories associated with free boundary theories are added. Typos corrected, V3. Minor corrections: clarification in section 9 is added and typos correcte

    Conditional Planning with External Functions

    Full text link
    Abstract. We introduce the logic-based planning language Kc as an extension of K [5]. Kc has two advantages upon K. First, the introduction of external func-tion calls in the rules of a planning description allows the knowledge engineer to describe certain planning domains, e.g. involving complex action effects, in a more intuitive fashion then is possible in K. Secondly, in contrast to the confor-mant planning framework K, Kc is formalized as a conditional planning system, which enables Kc to solve planning problems that are impossible to express in K, e.g. involving sensing actions. A prototype implementation of conditional plan-ning with Kc is build on top of the DLVKsystem, and we illustrate its use by some small examples.

    Answer Set Programming for Non-Stationary Markov Decision Processes

    Full text link
    Non-stationary domains, where unforeseen changes happen, present a challenge for agents to find an optimal policy for a sequential decision making problem. This work investigates a solution to this problem that combines Markov Decision Processes (MDP) and Reinforcement Learning (RL) with Answer Set Programming (ASP) in a method we call ASP(RL). In this method, Answer Set Programming is used to find the possible trajectories of an MDP, from where Reinforcement Learning is applied to learn the optimal policy of the problem. Results show that ASP(RL) is capable of efficiently finding the optimal solution of an MDP representing non-stationary domains

    Asymptotics of Selberg-like integrals: The unitary case and Newton's interpolation formula

    Full text link
    We investigate the asymptotic behavior of the Selberg-like integral 1N![0,1]Nx1pi<j(xixj)2ixia1(1xi)b1dxi \frac1{N!}\int_{[0,1]^N}x_1^p\prod_{i<j}(x_i-x_j)^2\prod_ix_i^{a-1}(1-x_i)^{b-1}dx_i, as NN\to\infty for different scalings of the parameters aa and bb with NN. Integrals of this type arise in the random matrix theory of electronic scattering in chaotic cavities supporting NN channels in the two attached leads. Making use of Newton's interpolation formula, we show that an asymptotic limit exists and we compute it explicitly
    corecore